基于紫外-可見(jiàn)光譜法水質(zhì) COD檢測(cè)方法與建模研究
[Abstract]:In recent years, with the rapid development of economy and the acceleration of urbanization in China, the problem of water pollution is becoming more and more serious, which has become one of the most serious problems faced by water resources in China and even in the world. Chemical oxygen demand (COD), as an important index to evaluate the pollution degree of water body, can characterize the concentration of organic matter in water body. UV-vis spectroscopy is a green detection technology because of its no secondary pollution, short period and on-line detection. In this paper, the following research work has been carried out on the COD detection method and modeling of water quality by UV-vis spectroscopy: 1. In order to detect the COD value of water quality, a UV-vis spectral water quality COD detection system was developed in this paper, and the standard solution of potassium hydrogen phthalate was prepared and detected in laboratory. Collection of UV-vis absorbance spectral data. 2. In order to solve the problem that the original spectrum is affected by a lot of noise, this paper needs a method to Denoise the original spectrum with as little real information as possible in the process of denoising, and wavelet analysis can meet the requirements. In this paper, the wavelet function db8, is used to decompose the original spectrum by 5 layers of wavelet, and then the soft threshold method is used to quantify the original spectrum. The reconstructed COD spectral curve of water quality is very smooth and the denoising effect is remarkable. After wavelet denoising, there are still spectral information redundancy and multiple collinearity problems. Principal component analysis (PCA) is used to reduce the dimension of spectral data, effectively remove redundant information, retain useful feature information, and improve the efficiency of machine learning. Study on the prediction model of COD detection and prediction of water quality because of the complex nonlinear relationship between UV-vis spectral data and COD value of water quality, the traditional mechanism modeling method can not be used. The COD prediction model of water quality based on BP neural network can effectively predict the COD value of water quality. In order to improve the prediction accuracy, the improved whale optimization algorithm is used to optimize the parameters of BP neural network, and a water quality COD prediction model based on whale optimization algorithm BP neural network is established. The prediction results show that the prediction accuracy of the model is higher. It can be applied to the prediction of COD detection of water quality. 4. Aiming at the defects of slow convergence speed and low convergence accuracy of the basic whale optimization algorithm, an improved whale optimization algorithm (MWOA), MWOA is proposed, which mainly studies the population initialization mechanism and nonlinear adaptive weight strategy. The simulation results show that the improved algorithm can maintain the initial population diversity in the optimization process, and has better convergence speed and accuracy.
【學(xué)位授予單位】:中國(guó)科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:X832
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張崢;魏彪;湯戈;馮鵬;吳德操;劉娟;唐媛;熊雙飛;;一種紫外-可見(jiàn)光譜法水質(zhì)COD檢測(cè)的預(yù)測(cè)模型研究[J];激光雜志;2016年04期
2 羅繼陽(yáng);魏彪;湯斌;趙敬曉;吳德操;米德伶;俞鵬煒;;水質(zhì)COD檢測(cè)用光譜法的水體環(huán)境濁度解算方法[J];環(huán)境科學(xué)與技術(shù);2015年S2期
3 龍文;趙東泉;徐松金;;求解約束優(yōu)化問(wèn)題的改進(jìn)灰狼優(yōu)化算法[J];計(jì)算機(jī)應(yīng)用;2015年09期
4 黃敏超;高美鳳;;基于小波閾值組合濾波器的光譜去噪方法[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期
5 李仁仲;;淺談我國(guó)水資源污染的現(xiàn)狀、原因及對(duì)策[J];科技創(chuàng)新導(dǎo)報(bào);2015年07期
6 湯斌;魏彪;毛本將;趙敬曉;馮鵬;;紫外-可見(jiàn)吸收光譜法水質(zhì)檢測(cè)系統(tǒng)的噪聲分析與處理研究[J];激光與光電子學(xué)進(jìn)展;2014年04期
7 王莉麗;劉憲華;米瑪;張秋豐;宗燕平;張永豐;;基于光譜法的海水硝酸鹽傳感器開(kāi)發(fā)與應(yīng)用[J];傳感器與微系統(tǒng);2014年01期
8 譚淞文;李維國(guó);叢媛媛;公天齊;李紅桔;;改進(jìn)分光光度法測(cè)Ni以規(guī)避大量干擾離子[J];環(huán)境工程學(xué)報(bào);2012年09期
9 王吉權(quán);王福林;邱立春;;基于BP神經(jīng)網(wǎng)絡(luò)的農(nóng)機(jī)總動(dòng)力預(yù)測(cè)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2011年12期
10 吳國(guó)慶;畢衛(wèi)紅;呂佳明;付廣偉;;近紅外透射和紫外吸光度法檢測(cè)水質(zhì)化學(xué)需氧量的研究[J];光譜學(xué)與光譜分析;2011年06期
相關(guān)碩士學(xué)位論文 前5條
1 劉飛;水體COD的光譜學(xué)測(cè)量方法研究與傳感設(shè)備研制[D];重慶郵電大學(xué);2016年
2 趙敬曉;紫外—可見(jiàn)光譜法水質(zhì)COD檢測(cè)技術(shù)研究[D];重慶大學(xué);2015年
3 劉子毓;紫外法水質(zhì)COD檢測(cè)的理論與實(shí)驗(yàn)研究[D];天津大學(xué);2010年
4 張鵬;基于主成分分析的綜合評(píng)價(jià)研究[D];南京理工大學(xué);2004年
5 劉鳳;紫外吸收法COD監(jiān)測(cè)技術(shù)的研究[D];華北電力大學(xué)(河北);2003年
,本文編號(hào):2484707
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2484707.html