基于統(tǒng)計(jì)與光程分布的二氧化碳反演方法
發(fā)布時(shí)間:2018-09-09 19:34
【摘要】:為了研究氣候變化,需要實(shí)現(xiàn)遙感衛(wèi)星對(duì)二氧化碳(CO_2)的高精度測(cè)量。氣溶膠和透射率較高的薄卷云的散射是影響大氣中CO_2反演精度的主要環(huán)境因素。結(jié)合主成分分析(PCA)的統(tǒng)計(jì)方法和光程概率分布的密度函數(shù)(PPDF)方法,利用PCA方法得到大氣CO_2反演的先驗(yàn)值,避免了因偏差過(guò)大而導(dǎo)致的運(yùn)算結(jié)果無(wú)法接近真值;基于3層PPDF模型,解決了薄卷云和氣溶膠散射引起的光子路徑變化而導(dǎo)致的吸收譜線變化的問(wèn)題。結(jié)果表明,PCA方法和PPDF方法聯(lián)合反演的反演精度得到明顯提高;對(duì)2013年塔克拉瑪干沙漠GOSAT數(shù)據(jù)的反演結(jié)果進(jìn)行分析,采用單一的PPDF方法得到的反演結(jié)果的方差為3.5,兩種方法相結(jié)合得到的反演結(jié)果的方差為1.4,優(yōu)于日本國(guó)立環(huán)境研究所(NIES)提供的反演方差(1.6)。
[Abstract]:In order to study climate change, high precision measurement of carbon dioxide (CO_2) by remote sensing satellites is needed. The scattering of aerosols and thin cirrus with high transmittance is the main environmental factor affecting the accuracy of CO_2 inversion in the atmosphere. Combining the statistical method of principal component analysis (PCA) and the density function (PPDF) method of optical path probability distribution, a priori value of atmospheric CO_2 inversion is obtained by using PCA method, which avoids that the calculation result caused by the deviation is too large to approach the true value, and based on the three-layer PPDF model, The problem of absorption line variation caused by photon path change caused by thin cirrus and aerosol scattering is solved. The results show that the inversion accuracy of the combined PPDF method and the GOSAT data of the Taklimakan Desert in 2013 has been improved obviously, and the inversion results of the GOSAT data in the Taklimakan Desert in 2013 have been analyzed. The variance of the inversion result obtained by using a single PPDF method is 3.5, and the variance of the inversion result obtained by the combination of the two methods is 1.4, which is better than the inversion variance provided by (NIES) of the National Institute of Environment of Japan (1.6).
【作者單位】: 中國(guó)科學(xué)院安徽光學(xué)精密機(jī)械研究所中國(guó)科學(xué)院通用光學(xué)定標(biāo)與表征技術(shù)重點(diǎn)實(shí)驗(yàn)室;中國(guó)科學(xué)技術(shù)大學(xué);
【基金】:國(guó)家自然科學(xué)基金(41175037);國(guó)家自然科學(xué)基金青年科學(xué)基金(41601393) 高分辨對(duì)地觀測(cè)系統(tǒng)重大專項(xiàng)(民用部分)(32-Y20A17-9001-15/17)
【分類號(hào)】:X87
本文編號(hào):2233364
[Abstract]:In order to study climate change, high precision measurement of carbon dioxide (CO_2) by remote sensing satellites is needed. The scattering of aerosols and thin cirrus with high transmittance is the main environmental factor affecting the accuracy of CO_2 inversion in the atmosphere. Combining the statistical method of principal component analysis (PCA) and the density function (PPDF) method of optical path probability distribution, a priori value of atmospheric CO_2 inversion is obtained by using PCA method, which avoids that the calculation result caused by the deviation is too large to approach the true value, and based on the three-layer PPDF model, The problem of absorption line variation caused by photon path change caused by thin cirrus and aerosol scattering is solved. The results show that the inversion accuracy of the combined PPDF method and the GOSAT data of the Taklimakan Desert in 2013 has been improved obviously, and the inversion results of the GOSAT data in the Taklimakan Desert in 2013 have been analyzed. The variance of the inversion result obtained by using a single PPDF method is 3.5, and the variance of the inversion result obtained by the combination of the two methods is 1.4, which is better than the inversion variance provided by (NIES) of the National Institute of Environment of Japan (1.6).
【作者單位】: 中國(guó)科學(xué)院安徽光學(xué)精密機(jī)械研究所中國(guó)科學(xué)院通用光學(xué)定標(biāo)與表征技術(shù)重點(diǎn)實(shí)驗(yàn)室;中國(guó)科學(xué)技術(shù)大學(xué);
【基金】:國(guó)家自然科學(xué)基金(41175037);國(guó)家自然科學(xué)基金青年科學(xué)基金(41601393) 高分辨對(duì)地觀測(cè)系統(tǒng)重大專項(xiàng)(民用部分)(32-Y20A17-9001-15/17)
【分類號(hào)】:X87
【相似文獻(xiàn)】
中國(guó)期刊全文數(shù)據(jù)庫(kù) 前2條
1 劉毅;楊東旭;蔡兆男;;中國(guó)碳衛(wèi)星大氣CO_2反演方法:GOSAT數(shù)據(jù)初步應(yīng)用[J];科學(xué)通報(bào);2013年11期
2 ;[J];;年期
,本文編號(hào):2233364
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/2233364.html
最近更新
教材專著