湖底表層沉積物中藍(lán)藻定量檢測方法研究
本文選題:越冬藍(lán)藻 + 冷凍干燥法; 參考:《合肥工業(yè)大學(xué)》2017年碩士論文
【摘要】:本文以室內(nèi)培養(yǎng)藻與野外水華藍(lán)藻為研究對象,以提取藻藍(lán)蛋白的濃度為指標(biāo),以熒光檢測法為手段,通過對破碎方法和提取劑的選擇,分別探究了水樣中藍(lán)藻生物量與藻藍(lán)蛋白濃度的關(guān)系以及沉積物樣品中藍(lán)藻生物量與藻藍(lán)蛋白濃度的關(guān)系。實(shí)驗(yàn)結(jié)果表明:水樣中通過對藻屑的顯微鏡檢及控制相同實(shí)驗(yàn)條件下藻藍(lán)蛋白的提取效率可知,凍干法對藍(lán)藻細(xì)胞的破碎效率高于反復(fù)凍融法?刂破扑榉椒捌渌麑(shí)驗(yàn)條件不變時(shí),對比去離子水、磷酸鹽溶液和Tris試劑對藻藍(lán)蛋白的提取效率發(fā)現(xiàn),去離子水對藻藍(lán)蛋白的提取效率最高。在反復(fù)凍融實(shí)驗(yàn)中,冷凍溫度與提取劑添加順序,對藍(lán)藻細(xì)胞破碎率無顯著影響。在凍干實(shí)驗(yàn)中,藍(lán)藻真空抽濾在濾膜上能提高藻藍(lán)蛋白的破碎率。采用熒光檢測法測定藻藍(lán)蛋白時(shí),高效的前處理技術(shù)不僅為在湖泊環(huán)境監(jiān)測中能實(shí)現(xiàn)快速準(zhǔn)確的定量藍(lán)藻的生物量提供可能,同時(shí)對藍(lán)藻水華的預(yù)防和控制也起到積極作用。對沉積物樣品檢測發(fā)現(xiàn),相同實(shí)驗(yàn)條件下,對沉積物中藍(lán)藻細(xì)胞進(jìn)行凍干破碎和反復(fù)凍融破碎,所提取的藻藍(lán)蛋白濃度沒有明顯差別,兩種破碎方法均可選用。其中沉積物含水率對實(shí)驗(yàn)結(jié)果影響很大,由于沉積物顆粒對藻藍(lán)蛋白的吸附與掩蔽作用,沉積物的含水率越高,藻藍(lán)蛋白提取效率就越高。提高沉積物含水率是提高實(shí)驗(yàn)準(zhǔn)確定的重要措施。沉積物中藍(lán)藻生物量與藻藍(lán)蛋白的濃度具有良好的線性相關(guān)性,可以通過對沉積物中藻藍(lán)蛋白的測定計(jì)算藍(lán)藻生物量。對比顯微鏡計(jì)數(shù)法、流式細(xì)胞儀計(jì)數(shù)法和藻藍(lán)蛋白間接定量方法可知,顯微鏡和流式細(xì)胞儀只能對水樣中藍(lán)藻生物量進(jìn)行準(zhǔn)確計(jì)數(shù),對于沉積物中的藍(lán)藻卻無計(jì)可施。而通過藻藍(lán)蛋白間接定量藍(lán)藻細(xì)胞不僅可以準(zhǔn)確計(jì)算水樣中藍(lán)藻的生物量,還能準(zhǔn)確計(jì)算出沉積物中藍(lán)藻的生物量。并且實(shí)驗(yàn)結(jié)果穩(wěn)定性好,準(zhǔn)確率高。
[Abstract]:In this paper, indoor culture algae and field Shui Hua cyanobacteria were used as research objects, the concentration of phycocyanin was taken as the index, fluorescence detection method was used as the method, and the method of crushing and the selection of extractant were used. The relationship between cyanobacteria biomass and phycocyanin concentration in water samples and the relationship between cyanobacteria biomass and phycocyanin concentration in sediment samples were studied. The results showed that the efficiency of phycocyanin extraction in water samples was higher than that by repeated freeze-thawing method through microscopical examination and control of phycocyanin extraction under the same experimental conditions. Compared with deionized water, phosphate solution and Tris reagent, the extraction efficiency of phycocyanin was the highest in deionized water and other experimental conditions. In the repeated freeze-thaw experiment, the freezing temperature and the adding order of extractant had no significant effect on the cell breakage rate of cyanobacteria. In freeze-drying experiment, cyanobacteria vacuum filtration on the membrane can improve the breaking rate of phycocyanin. In the determination of phycocyanin by fluorescence detection, the efficient pretreatment technique not only makes it possible to realize rapid and accurate quantitative biomass of cyanobacteria in lake environment monitoring, but also plays an active role in the prevention and control of cyanobacteria Shui Hua. It was found that under the same experimental conditions, the concentration of phycocyanin extracted by freeze-drying and repeated freezing and thawing of cyanobacteria in sediment was not significantly different, and the two methods could be used. The sediment moisture content has a great influence on the experimental results. Because of the adsorption and masking of phycocyanin by sediment particles, the higher the water content of sediment is, the higher the extraction efficiency of phycocyanin is. Increasing the moisture content of sediment is an important measure to improve the accuracy of the experiment. There is a good linear correlation between cyanobacteria biomass and phycocyanin concentration in sediments, and the biomass of cyanobacteria can be calculated by the determination of phycocyanin in sediments. Compared with microscope counting method flow cytometry method and indirect quantitative method of phycocyanin we can see that microscope and flow cytometry can only accurately count the biomass of cyanobacteria in water samples but there is no way to do anything about cyanobacteria in sediment. The indirect quantification of cyanobacteria by phycocyanin can not only accurately calculate the biomass of cyanobacteria in water samples, but also accurately calculate the biomass of cyanobacteria in sediments. The experimental results are stable and accurate.
【學(xué)位授予單位】:合肥工業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X524;X832
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳蕾;龐廣昌;陳慶森;;螺旋藻藻藍(lán)蛋白的規(guī);崛『蜕V純化技術(shù)研究進(jìn)展[J];食品科學(xué);2008年04期
2 劉錦玉,張季平,萬柱禮,梁棟材,張建平,伍華菊;條斑紫菜變藻藍(lán)蛋白立方晶系的初步晶體學(xué)研究[J];科學(xué)通報(bào);1997年12期
3 關(guān)燕清,周天鴻;光固定化藻藍(lán)蛋白對內(nèi)皮細(xì)胞生長的影響[J];功能高分子學(xué)報(bào);2003年03期
4 韋萍,李環(huán),張成武;極大螺旋藻藻藍(lán)蛋白的提取與純化[J];南京化工大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年03期
5 李穩(wěn)山;門瀟;李朋富;陳麗;劉志禮;;鹽生隱桿藻藻藍(lán)蛋白的分離純化及理化性質(zhì)[J];鹽業(yè)與化工;2008年03期
6 林紅衛(wèi),覃海錯,伍正清,黃文榜,梁宏;鈍頂螺旋藻中藻藍(lán)蛋白提取純化新工藝[J];精細(xì)化工;1998年01期
7 楊立紅;王曉潔;鐘旭升;馮培勇;李小青;;魚腥藻藻藍(lán)蛋白的抗氧化作用[J];食品科學(xué);2006年12期
8 劉楊;王雪青;趙培;龐廣昌;;水提分離鈍頂螺旋藻藻藍(lán)蛋白及其穩(wěn)定性研究[J];天津師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期
9 廖曉霞;張學(xué)武;;高效分離純化藻藍(lán)蛋白新法[J];食品工業(yè)科技;2011年06期
10 邵明飛;趙楠;劉冰;秦松;;規(guī)模化制備藻藍(lán)蛋白工藝技術(shù)研究進(jìn)展[J];食品與發(fā)酵工業(yè);2013年02期
相關(guān)會議論文 前10條
1 江濤;張季平;常文瑞;梁棟材;;多管藻(Polysiphonia urceolata)R-藻藍(lán)蛋白2.4,
本文編號:1949703
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1949703.html