DNAPLs污染場(chǎng)區(qū)復(fù)電阻率動(dòng)態(tài)監(jiān)測(cè)裝置的研究
本文選題:DNAPLs + LabVIEW; 參考:《山東工商學(xué)院》2017年碩士論文
【摘要】:土壤有機(jī)物污染特別是重非水相液體(Densenon Aqueousphase Liquids,縮寫為DNAPLs)污染是當(dāng)前我國土壤和地下水污染控制的難題之一,探索地球物理動(dòng)態(tài)數(shù)據(jù)檢測(cè)新方法與新技術(shù)迫在眉睫。為治理DNAPLs土壤污染問題,首先要明確污染的程度和范圍,建立有效的污染監(jiān)測(cè)和評(píng)價(jià)方法十分必要。傳統(tǒng)的檢測(cè)如鉆探取樣加化學(xué)分析,不僅浪費(fèi)了大量的人力物力和財(cái)力,還容易對(duì)土壤造成二次污染,且僅為靜態(tài)檢測(cè),不能準(zhǔn)確確定污染范圍和實(shí)時(shí)監(jiān)測(cè),而復(fù)電阻率作為物理探測(cè)的一種新方法,可以很好的解決上述問題,但在土壤污染檢測(cè)方面研究還很少,且目前復(fù)電阻率污染檢測(cè)裝置尚未成熟,因此迫切需要對(duì)復(fù)電阻率檢測(cè)裝置進(jìn)行深入研究。本文研究以解決實(shí)際問題為出發(fā)點(diǎn),針對(duì)DNAPLs污染土壤,研究復(fù)電阻率檢測(cè)新方法,并設(shè)計(jì)開發(fā)復(fù)電阻率監(jiān)測(cè)裝置,將地球物理學(xué)、環(huán)境化學(xué)以及計(jì)算機(jī)與信息科學(xué)的相關(guān)理論與方法結(jié)合在一起,探索適用于DNAPLs污染土壤監(jiān)測(cè)的新途徑。本文在分析土壤電性機(jī)理和極化機(jī)理的基礎(chǔ)上,對(duì)土壤復(fù)電阻率法測(cè)量的原理進(jìn)行分析,設(shè)計(jì)開發(fā)了一套基于LabVIEW的實(shí)驗(yàn)系統(tǒng)。該系統(tǒng)實(shí)現(xiàn)了復(fù)電阻率的實(shí)時(shí)測(cè)量和圖形化顯示,對(duì)采集信號(hào)進(jìn)行頻譜分析、相頻分析,并實(shí)時(shí)顯示和記錄采集波形,實(shí)時(shí)保存復(fù)電阻率數(shù)據(jù)。利用設(shè)計(jì)開發(fā)的復(fù)電阻率測(cè)量裝置,對(duì)DNAPLs污染土壤進(jìn)行室內(nèi)實(shí)驗(yàn),實(shí)驗(yàn)樣品采用細(xì)砂和5%膨潤土均勻混合來模擬實(shí)際土壤,測(cè)量在低頻下進(jìn)行,頻率范圍為2-4--25Hz,結(jié)果表明,隨著DNAPLs含量的增加,復(fù)電阻率幅值明顯增大,復(fù)電阻率相位得到明顯壓制,但隨著頻率的變化其相位變化十分明顯,且當(dāng)污染到達(dá)一定程度時(shí),其復(fù)電阻率參數(shù)到達(dá)一穩(wěn)定值,可以很好的區(qū)分污染和未污染土壤。又通過可溶性金屬鹽溶液污染土壤實(shí)驗(yàn),與DNAPLs污染實(shí)驗(yàn)數(shù)據(jù)分析得到,土壤孔隙中填充物發(fā)生改變,其表現(xiàn)出來的極化效應(yīng)不同,進(jìn)而使測(cè)量得到的復(fù)電阻率幅值和相位發(fā)生變化,產(chǎn)生差異。說明可以通過污染物性質(zhì)的不同來檢測(cè)土壤污染。通過本文研究的復(fù)電阻率監(jiān)測(cè)裝置能夠很好地在室內(nèi)實(shí)驗(yàn)下區(qū)分DNAPLs污染與未污染土壤,為野外復(fù)電阻率監(jiān)測(cè)提供了基礎(chǔ)性資料,同時(shí)也為復(fù)電阻率監(jiān)測(cè)裝置的研究提供了一定的參考和推動(dòng)作用。
[Abstract]:Soil organic pollution, especially Densenon Aqueousphase liquid (abbreviated as DNAPLs) pollution, is one of the most difficult problems in soil and groundwater pollution control in China. It is urgent to explore new methods and techniques for geophysical dynamic data detection. In order to solve the problem of soil pollution in DNAPLs, it is necessary to define the extent and scope of pollution, and to establish an effective method of pollution monitoring and evaluation. Traditional detection, such as drilling sampling and chemical analysis, not only wastes a lot of manpower, material and financial resources, but also easily causes secondary pollution to the soil, and is only static detection, which can not accurately determine the range of contamination and real-time monitoring. As a new method of physical detection, complex resistivity can solve the above problems well, but the research on soil pollution detection is still few, and the complex resistivity pollution detection device is not mature. Therefore, there is an urgent need for in-depth research on complex resistivity detection devices. In this paper, based on solving the practical problems, a new method of complex resistivity detection is studied in view of DNAPLs contaminated soil, and a complex resistivity monitoring device is designed and developed. The environmental chemistry, computer and information science theories and methods are combined to explore a new approach for soil monitoring of DNAPLs pollution. Based on the analysis of soil electrical mechanism and polarization mechanism, the principle of soil complex resistivity measurement is analyzed in this paper, and a set of experimental system based on LabVIEW is designed and developed. The system realizes real-time measurement and graphical display of complex resistivity, and carries out spectrum analysis, phase frequency analysis, real-time display and recording of acquisition waveforms, and preservation of complex resistivity data in real time. Using the complex resistivity measuring device designed and developed, the laboratory experiment of DNAPLs contaminated soil was carried out. The experimental samples were mixed with fine sand and 5% bentonite to simulate the actual soil. The measurement was carried out at low frequency and the frequency range was 2-4--25Hz. the results showed that, With the increase of DNAPLs content, the amplitude of complex resistivity increases obviously, the phase of complex resistivity is suppressed obviously, but the phase changes obviously with the change of frequency, and when the pollution reaches a certain degree, the complex resistivity parameter reaches a stable value. A good distinction can be made between contaminated and uncontaminated soils. Through the experiment of soil polluted by soluble metal salt solution and the analysis of DNAPLs pollution experiment data, it was found that the filler in soil pore changed, and its polarization effect was different. Furthermore, the amplitude and phase of the complex resistivity obtained by the measurement are different. It shows that soil pollution can be detected by the difference of pollutant properties. The complex resistivity monitoring device studied in this paper can distinguish DNAPLs contaminated soil from uncontaminated soil well in laboratory experiments, which provides basic data for field complex resistivity monitoring. At the same time, it also provides a certain reference and promotion for the research of complex resistivity monitoring device.
【學(xué)位授予單位】:山東工商學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X85
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 浦燁楓;江思珉;栗現(xiàn)文;吉久霞;;DNAPLs在低滲透性夾層影響下的遷移和分布特征研究[J];工程勘察;2015年12期
2 郭小品;付融冰;徐珍;;中國臺(tái)灣地區(qū)土壤及地下水污染整治管理與經(jīng)驗(yàn)[J];環(huán)境污染與防治;2015年02期
3 李冬芳;;控制系統(tǒng)的LabVIEW開發(fā)環(huán)境[J];電子世界;2014年11期
4 ;環(huán)境保護(hù)部和國土資源部發(fā)布全國土壤污染狀況調(diào)查公報(bào)[J];資源與人居環(huán)境;2014年04期
5 盧文喜;羅建男;辛欣;陳社明;;表面活性劑強(qiáng)化的DNAPLs污染含水層修復(fù)過程的數(shù)值模擬[J];地球科學(xué)(中國地質(zhì)大學(xué)學(xué)報(bào));2012年05期
6 關(guān)繼騰;程媛媛;于華;;利用等效電路模型研究泥質(zhì)砂巖復(fù)電阻率頻散特性[J];測(cè)井技術(shù);2011年06期
7 辛欣;盧文喜;羅建男;陳社明;;DNAPLs污染含水層多相流數(shù)值模擬模型的替代模型[J];吉林大學(xué)學(xué)報(bào)(地球科學(xué)版);2011年03期
8 白蘭;周仲華;張虎元;楊要許;鄭龍;;污染土的電阻率特征分析[J];環(huán)境工程;2008年02期
9 肖占山;徐世浙;羅延鐘;王東;朱世和;;巖石復(fù)電阻率頻散特性的機(jī)理研究[J];浙江大學(xué)學(xué)報(bào)(理學(xué)版);2006年05期
10 韓立華;劉松玉;杜延軍;;一種檢測(cè)污染土的新方法——電阻率法[J];巖土工程學(xué)報(bào);2006年08期
,本文編號(hào):1894843
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1894843.html