石化綜合廢水及其特征污染物的三維熒光光譜特性研究
發(fā)布時(shí)間:2018-05-07 07:58
本文選題:石化廢水 + 三維熒光。 參考:《蘭州交通大學(xué)》2017年碩士論文
【摘要】:本研究采用樹脂分離以及超濾分級(jí)對(duì)分別對(duì)兩種不同石化綜合廢水(煉化廢水和煉油廢水)中不同類型有機(jī)污染物組分進(jìn)行了分離,結(jié)合平行因子算法(PARAFAC),對(duì)原水和各分離組分三維熒光光譜的熒光信息進(jìn)行了解析。同時(shí)對(duì)石化綜合廢水中主要特征污染物進(jìn)行了定性分析,研究了廢水中主要特征污染物與綜合廢水熒光特性之間的關(guān)系。沿石化綜合污水處理廠污、廢水處理流程,煉化和煉油廢水的三維熒光光譜的總熒光強(qiáng)度均呈減弱趨勢(shì);兩種廢水在低激發(fā)波段色氨酸區(qū)的特征熒光峰均位于λех/еm=230/340 nm處,煉化與煉油廢水的該特征峰熒光強(qiáng)度去除率分別為50%與54%;低激發(fā)類酪氨酸熒光峰λех/еm=210/300 nm與可溶性微生物副產(chǎn)物的熒光峰λех/еm=250/310nm為煉化廢水的特征熒光峰,水解酸化處理后消失;λех/еm=220/305 nm為煉油廢水的特征熒光峰,好氧處理后消失;煉化廢水位于RegionV的類胡敏酸類有機(jī)物熒光峰λех/еm=255/465 nm在二沉池前,熒光強(qiáng)度呈增強(qiáng)趨勢(shì),經(jīng)深度處理后減弱;煉油廢水位于RegionIII的類富里酸類有機(jī)物熒光峰λех/еm=320/400 nm,缺氧出水后熒光峰強(qiáng)度增加,后續(xù)無(wú)顯著變化。煉化廢水四種樹脂分離組分的三維熒光光譜PRAFAC運(yùn)算結(jié)果為5組分,主要特征熒光峰位于λех/еm=225/340 nm、235/340 nm、230/380 nm、235/360 nm、245/340 nm;煉油廢水四種樹脂分離組分的三維熒光光譜PRAFAC運(yùn)算結(jié)果為4組分,主要特征熒光峰位于λех/еm=225/340 nm、235/360 nm、235/410 nm、200/300 nm。在污水處理不同工段,HIS的COD、TOC、TN在4類樹脂分離組分中的含量均最高;三維熒光光譜解析表明,兩種廢水中HON類有機(jī)污染物的可生化性最差,為污水廠出水中的主要熒光類有機(jī)污染物,主要特征熒光峰位于λех/еm=235/360 nm。煉化廢水與煉油廢水中均含有熒光峰λех/еm=225/340 nm,產(chǎn)生該類熒光峰的有機(jī)污染物可生化性較好,經(jīng)好氧生物處理即可完全去除。超濾分級(jí)各組分中,分子量1 kDa的組分,熒光峰強(qiáng)度最強(qiáng),占煉化廢水進(jìn)水熒光強(qiáng)度的77.13%,占煉油廢水進(jìn)水熒光強(qiáng)度的86.11%。λех/еm=225/340 nm、235/345 nm的兩類熒光峰均為兩種廢水的特征熒光峰,其中熒光峰λех/еm=235/345 nm經(jīng)缺氧、好氧生物處理后熒光強(qiáng)度顯著增強(qiáng)。石化綜合廢水中主要特征污染物苯、甲苯、乙苯、丙苯、異丙苯、二甲苯、三甲苯的熒光峰位于λех/еm=205~215 nm/280~295 nm;苯乙烯的熒光峰位于λех/еm=230/345nm;苯酚的兩個(gè)熒光峰位于λех/еm=220/300 nm、270/295 nm;苯胺的兩個(gè)熒光峰分別位于λех/еm=235/335 nm、280/335 nm;氯苯的熒光峰位于λех/еm=215/290 nm;硝基苯無(wú)顯著熒光峰。苯乙烯、苯酚、苯胺的特征熒光峰與煉化和煉油廢水的特征熒光峰位置基本一致。
[Abstract]:In this study, resin separation and ultrafiltration were used to separate different organic pollutants from two kinds of petrochemical wastewater (refinery wastewater and refinery wastewater). Based on the parallel factor algorithm, the fluorescence information of three dimensional fluorescence spectra of raw water and separated components was analyzed. At the same time, the main characteristic pollutants in petrochemical wastewater were qualitatively analyzed, and the relationship between the main characteristic pollutants in the wastewater and the fluorescence characteristics of the wastewater was studied. The total fluorescence intensity of the three dimensional fluorescence spectra of the wastewater from petrochemical integrated wastewater treatment plant, wastewater treatment process, refining and refining wastewater showed a decreasing trend, and the characteristic fluorescence peaks of the two kinds of wastewater in the low excitation band tryptophan region were both located at the 位 ~ (+) ~ (-) ~ (230) ~ (340) nm. The fluorescence intensity removal rates of this characteristic peak were 50% and 54% for refinery wastewater, respectively, and the fluorescence peak 位 _ (10 / 300) nm of low excitation tyrosine fluorescence peak and the fluorescence peak 位 ~ (2 +) / m=250/310nm of soluble microbial by-products were the characteristic fluorescence peaks of refinery wastewater. After hydrolysis and acidification treatment, 位 ~ (2 +) / m ~ (2 +) = 220 / 305 nm was the characteristic fluorescence peak of refinery wastewater, and then disappeared after aerobic treatment, and the fluorescence peak of Hu Min like acid organic compounds in RegionV was 位 ~ (2 +) / m ~ (25) / ~ (65) nm in front of secondary settling tank, the fluorescence intensity showed an increasing trend and decreased after advanced treatment. The fluorescence peak of organic compounds such as fulvic acid in RegionIII is 320 / 400 nm, and the intensity of fluorescence peak increases after anoxic water treatment, but there is no significant change in subsequent fluorescence peak. The PRAFAC calculation results of three dimensional fluorescence spectra of four kinds of resin separation components in refinery wastewater are five components, the main characteristic fluorescence peak is located at 位 ~ (2 25 /) 340Nm ~ (2) N ~ (-1) N ~ (2 +) ~ (23) / 380Nm ~ (3) N ~ (2 +) N ~ (3 +) N ~ (3 +) N ~ (34) N ~ (3 +) N ~ (34) N ~ (3 +) N ~ (3 +), the result of PRAFAC calculation of three dimensional fluorescence spectrum of four kinds of resin separation components in refinery wastewater is 4 components. The main characteristic fluorescence peaks are located at 位 ~ (25 / 340) nm ~ (-1) 235 / 360 ~ (nm) ~ (235) / 410 ~ (10) nm ~ (-1) ~ (200) ~ (300) nm ~ (-1). The contents of COD TOC TN of his in different stages of sewage treatment were the highest in the four kinds of resin separation components, and the three dimensional fluorescence spectrum analysis showed that the biodegradability of HON organic pollutants in the two kinds of wastewater was the worst. As the main fluorescent organic pollutants in the effluent of the wastewater treatment plant, the main characteristic fluorescence peak is located at 位 ~ (2 +) / ~ (2.5) / 360nm ~ (-1). Both refinery wastewater and refinery wastewater contain a fluorescence peak of 225 / 340 nm. The organic pollutants which produce this kind of fluorescence peak are biodegradable and can be completely removed by aerobic biological treatment. Among ultrafiltration fractionation components, the fluorescence peak intensity of molecular weight 1 kDa is the strongest, which accounts for 77.13% of the influent fluorescence intensity of refinery wastewater, and 86.11% of the influent fluorescence intensity of refinery wastewater. The two kinds of fluorescence peaks of 位 ~ (2 +) / ~ (2) 25 / 340nm ~ (235) / 345 nm are characteristic fluorescence peaks of two kinds of wastewater. The fluorescence peak 位 ~ (2 +) / ~ (235) / 345nm was significantly enhanced after anoxia and aerobic biological treatment. Benzene, toluene, ethylbenzene, propylbenzene, cumene, xylene, The fluorescence peaks of tritoluene are located at 位 ~ (2 +) / ~ (205) N ~ (2 +) 215 nm/280~295 ~ (m); those of styrene are located at 位 ~ (2 +) / m ~ (2 +) 230 / 345nm; two peaks of phenol are located at 位 ~ (2 +) / m ~ (2 +) / ~ (220) / m ~ (2 +) 270295 nm; two fluorescence peaks of aniline are located at 位 ~ (2 35) / m ~ (35) / N ~ (28)% ~ (335) nm, respectively; the fluorescence peak of chlorobenzene is located at 位 ~ (2 +) / m ~ (-1) 215290 nm ~ (-1); there is no significant fluorescence peak for nitrobenzene. The characteristic fluorescence peaks of styrene, phenol and aniline are basically the same as those of refinery and refinery wastewater.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:X78;X742
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周昀;李軍;陳飛;馬挺;倪永炯;;苯乙烯的三維熒光特性及水污染應(yīng)急處理[J];光譜學(xué)與光譜分析;2016年07期
2 祝鵬;劉成林;祝飛;;平行因子法分解成分分析在三維熒光光譜數(shù)據(jù)中的實(shí)現(xiàn)[J];光譜學(xué)與光譜分析;2015年06期
3 何偉;白澤琳;李一龍;劉文秀;何s標(biāo),
本文編號(hào):1856079
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1856079.html
最近更新
教材專著