磷渣基地聚物材料的制備及其固化含砷廢渣的研究
本文關(guān)鍵詞: 含砷廢渣 粉煤灰 磷渣 固化/穩(wěn)定化 浸出毒性 出處:《昆明理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:本文以云南某冶煉廠產(chǎn)生的含砷廢渣為研究對象,研究含砷廢渣在不同環(huán)境下砷毒性浸出特性;通過單因素篩選實驗、多因素正交實驗,考察了磷渣、粉煤灰等物料的摻量以及化學(xué)外加劑的種類和摻量對地聚物材料性能的影響,制備了力學(xué)性能優(yōu)良的地聚物材料;利用磷渣-粉煤灰基地聚物材料固化含砷廢渣,考察了含砷廢渣固化體在不同養(yǎng)護(hù)條件下的力學(xué)性能、砷浸出特性;通過凍融實驗、硫酸鹽侵蝕實驗初步探索地聚物材料固化體的耐久性。研究表明:(1)含砷廢渣在不同pH環(huán)境下,砷的浸出濃度差異比較大,中性環(huán)境下砷的浸出濃度比較穩(wěn)定,但仍大于1000mg·L-1;外摻石灰可以有效的控制含砷廢渣的浸出濃度,但石灰處理后含砷廢渣耐久性極差,在自然環(huán)境下堆存,極易造成二次污染;外摻水玻璃摻量不易過高,摻量太高時,含砷廢渣的浸出濃度升高。(2)通過單因素實驗、多因素的正交實驗確定了地聚物材料中磷渣、粉煤灰、高鈣灰的最佳摻量為磷渣75%、粉煤灰15%、高鈣灰10%,水玻璃的模數(shù)為M=1.2、摻量為4%(外摻)時,材料力學(xué)性能最好,常壓蒸汽養(yǎng)護(hù)24h,抗壓強度為40.98MPa;通過XRD、FTIR、SEM的手段對地聚物材料進(jìn)行表征,其物相組成主要為無定形相,具有豐富的網(wǎng)狀結(jié)構(gòu)。(3)通過對含砷廢渣進(jìn)行分析,其主要組成為As2O3和CaF2,砷含量為14.2%,考察了不同pH環(huán)境下其砷毒性浸出特性,其最低砷浸出濃度為1350mg·L-1,屬于危險廢棄物。利用磷渣基地聚物材料對其進(jìn)行固化處理,考察了養(yǎng)護(hù)時間及養(yǎng)護(hù)方式、砷渣摻量等因素對固化體性能的影響,最佳養(yǎng)護(hù)方式為蒸汽養(yǎng)護(hù),養(yǎng)護(hù)時間為32h,砷渣最高摻量為34%,固化體抗壓強度為13.6MPa,砷毒性浸出濃度為2.4mg·L-1,低于砷毒性浸出濃度國家標(biāo)準(zhǔn)要求限值(5mg·L-1)。(4)通過XRD、SEM、FTIR等手段對含砷廢渣固化體組成及結(jié)構(gòu)進(jìn)行分析可得,固化體物相組成主要為Ca3(AsO4)2、Ca2As2O7、AlAsO4、Ca10Si7As18,砷主要以難溶鹽的形式存在,并且填充于地聚物材料的豐富的網(wǎng)狀結(jié)構(gòu)中。從而通過物理包裹和化學(xué)鍵合的方式實現(xiàn)含砷廢渣的穩(wěn)定化處理。(5)對含砷廢渣固化體耐久性(凍融和硫酸鹽侵蝕)進(jìn)行分析:三種凍融方法凍融后的固化體質(zhì)量幾乎沒有變化;15個循環(huán)后固化體的抗壓強度仍能達(dá)到15MPa;同時含砷化合物的毒性浸出隨凍融破壞次數(shù)的增加而上升,9個循環(huán)后超出國家標(biāo)準(zhǔn)。硫酸鹽侵蝕對固化體的質(zhì)量破壞變化不很明顯;固化體的抗壓強度隨著侵蝕次數(shù)的增加出現(xiàn)下降的趨勢,但是8個循環(huán)過后依然大于25MPa;砷的浸出濃度有所上升,但是升高的趨勢不明前,且前5個循環(huán)能達(dá)到國家標(biāo)準(zhǔn)。(6)固化體經(jīng)濟(jì)成本分析:用磷渣基地聚物材料固化3.5萬噸含砷廢渣的原料成本為994.85萬元/年,加工制造成本為351.375萬元/年,固化成本合理。
[Abstract]:In this paper, the arsenic containing waste residue produced from a smelter in Yunnan Province is taken as the research object to study the arsenic toxicity leaching characteristics of arsenic containing waste residue under different environments. Through single-factor screening experiment and multi-factor orthogonal experiment, the effects of the content of phosphorus slag, fly ash and chemical admixture on the properties of polymer materials were investigated. Polymer materials with excellent mechanical properties were prepared. The mechanical properties and arsenic leaching characteristics of arsenic-containing waste residue solidified with phosphorus-fly ash base polymer under different curing conditions were investigated. Through freeze-thaw experiment and sulfate erosion experiment, the durability of solidified polymer material was preliminarily explored. The results showed that the arsenic leaching concentration of arsenic waste residue varied greatly under different pH conditions. The leaching concentration of arsenic in neutral environment is stable, but still more than 1000mg 路L ~ (-1). Lime admixture can effectively control the leaching concentration of arsenic containing waste slag, but the durability of arsenic containing waste slag after lime treatment is extremely poor, and it is easy to cause secondary pollution because of its storage in natural environment. The leaching concentration of arsenic-containing waste slag is increased when the content of water glass is too high. 2) the phosphorus slag and fly ash in the polymer material are determined by the single factor experiment and the orthogonal experiment of many factors. The optimum content of high calcium ash is phosphorous slag 75, fly ash 15, high calcium ash 10, water glass modulus Mu 1.2, and addition amount 4%, the mechanical properties of the material are the best. The compressive strength is 40.98 MPA when steam curing under atmospheric pressure for 24 h; The polymer materials were characterized by means of XRDX FTIR SEM. The phase composition of the polymer was mainly amorphous, with rich network structure. Its main components are As2O3 and CaF _ 2, and the arsenic content is 14.2.The arsenic toxicity leaching characteristics under different pH conditions are investigated, and the lowest arsenic leaching concentration is 1350mg 路L ~ (-1). The effect of curing time, curing mode and arsenic slag content on the properties of solidified body was investigated. The best curing method was steam curing. The curing time is 32 h, the maximum amount of arsenic slag is 34%, the compressive strength of the solidified body is 13.6 MPA, and the concentration of arsenic toxic leaching is 2.4 mg 路L ~ (-1). The composition and structure of arsenic-containing waste residue were analyzed by means of XRDX SEMX FTIR and other means, which were lower than the national standard limit of arsenic leaching concentration (5 mg 路L -1). The phase composition of the solidified body is mainly Ca3AsO4O2Ca2As2O7AlAsO4AlAsO4Ca10Si7As18.The arsenic mainly exists in the form of insoluble salt. And it is filled in the rich network structure of polymer material. The durability of arsenic-containing waste residue is realized by physical wrapping and chemical bonding. Freeze-thaw and sulfate erosion) analysis: three freeze-thaw methods after freezing and thawing the solidified body mass almost no change; After 15 cycles, the compressive strength of the solidified body can still reach 15 MPA. At the same time, the toxic leaching of arsenic-containing compounds increased with the increase of freeze-thaw failure times, and exceeded the national standard after 9 cycles. The compressive strength of the solidified body decreased with the increase of erosion times, but it was still more than 25 MPA after 8 cycles. The leaching concentration of arsenic increased, but the increasing trend was unknown. And the first five cycles can reach the national standard. 6) the economic cost analysis of curing body: the raw material cost of curing 35,000 tons of arsenic containing waste residue with phosphorous slag base polymer material is nine million nine hundred and forty-eight thousand and five hundred yuan per year. The cost of processing and manufacturing is three million five hundred and thirteen thousand and seven hundred and fifty yuan per year, and the solidification cost is reasonable.
【學(xué)位授予單位】:昆明理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:X756;TQ177
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黃瀟;范寬鵬;;水泥混凝土抗硫酸鹽侵蝕試驗方法探討[J];四川水泥;2016年01期
2 薛彩紅;鐵生年;李小寧;聶金合;高莉;邢書銀;;發(fā)泡劑對偏高嶺土基地質(zhì)聚合物輕質(zhì)材料性能影響[J];硅酸鹽通報;2015年S1期
3 羅中秋;周新濤;賈慶明;周元康;劉守慶;張召述;;磷渣基地聚物材料固化砷鈣渣的機(jī)理[J];硅酸鹽學(xué)報;2015年05期
4 施惠生;胡文佩;郭曉潞;夏明;;地聚合物的早期反應(yīng)過程及表征技術(shù)[J];硅酸鹽學(xué)報;2015年02期
5 張文華;張云升;;高溫養(yǎng)護(hù)條件下現(xiàn)代混凝土水化、硬化及微結(jié)構(gòu)形成機(jī)理研究進(jìn)展[J];硅酸鹽通報;2015年01期
6 李乃珍;王保全;張曉光;崔立廣;謝敬坦;劉翠華;范雙;劉國翠;;高鈣膨脹熟料的生產(chǎn)與應(yīng)用[J];膨脹劑與膨脹混凝土;2014年04期
7 徐躍;于秀淳;;復(fù)合唑來膦酸磷酸鈣骨水泥的力學(xué)性能測定[J];生物骨科材料與臨床研究;2014年04期
8 簡家成;劉崢;楊宏斌;劉麗榮;虞愛平;;地聚物膠凝材料制備及應(yīng)用研究現(xiàn)狀[J];礦產(chǎn)綜合利用;2014年03期
9 遲冬梅;;飲水高砷區(qū)人群24小時尿總砷代謝規(guī)律分析[J];中國地方病防治雜志;2014年03期
10 韓丹;車云軒;宋鵬;王琦;;偏高嶺土基地質(zhì)聚合物的制備和力學(xué)性能研究[J];四川水泥;2014年05期
相關(guān)會議論文 前1條
1 王丹;朱義年;;含砷廢渣處理技術(shù)進(jìn)展[A];中國環(huán)境保護(hù)優(yōu)秀論文集(2005)(下冊)[C];2005年
相關(guān)博士學(xué)位論文 前1條
1 徐光苗;寒區(qū)巖體低溫、凍融損傷力學(xué)特性及多場耦合研究[D];中國科學(xué)院研究生院(武漢巖土力學(xué)研究所);2006年
相關(guān)碩士學(xué)位論文 前2條
1 邊靜;基于HG-AFS砷環(huán)境形態(tài)分析標(biāo)準(zhǔn)技術(shù)體系研究[D];上海交通大學(xué);2011年
2 梁艷燕;地下水中砷的自然氧化模擬研究[D];中國地質(zhì)大學(xué);2010年
,本文編號:1462588
本文鏈接:http://sikaile.net/shengtaihuanjingbaohulunwen/1462588.html