HO-GDINA模型的EM算法參數(shù)估計
發(fā)布時間:2018-02-17 08:58
本文關(guān)鍵詞: 認知診斷模型 HO-GDINA模型 EM算法 估計精度 出處:《心理學(xué)探新》2017年05期 論文類型:期刊論文
【摘要】:Generalized DINA Model(G-DINA)為認知診斷模型提供了一個一般性的理論框架,而高階診斷模型不僅能描述被試的總體水平,還能描述被試對屬性的掌握情況(微觀的認知狀態(tài))以及被試掌握屬性與能力的關(guān)系,提供更豐富的信息。如果能把這兩者結(jié)合起來,可能對實際診斷工作的操作有較大幫助。文章首先對考慮高階結(jié)構(gòu)的整合性模型——HO-GDINA模型的形式進行討論,探討其參數(shù)估計EM算法的實現(xiàn),并用模擬過程對模型的估計精度進行研究,結(jié)果驗證了HO-GDINA的EM算法的正確性,并且說明該算法對該模型有較高估計精確度。然后用飽和模型在約束條件下的特殊形式HO-DINA模型對"分?jǐn)?shù)減法"這一經(jīng)典數(shù)據(jù)進行EM算法參數(shù)估計和具體分析,展示了HO-GDINA在實際情況中的具體使用,并與de la Torre之前用MCMC估計算法得到的研究結(jié)果做比較,基本一致,進一步表明HO-GDINA模型的參數(shù)估計EM算法在實際情境中的特殊形式下仍然適用。
[Abstract]:Generalized DINA Model-G-DINA provides a general theoretical framework for cognitive diagnostic models, and higher-order diagnostic models can not only describe the overall level of subjects. It can also describe the subjects' mastery of attributes (micro-cognitive state) and the relationship between the attributes and the ability of the subjects, and provide more information. If the two can be combined, This paper discusses the form of HO-GDINA model considering higher order structure, and discusses the realization of EM algorithm for parameter estimation. The estimation accuracy of the model is studied by the simulation process, and the results show that the EM algorithm of HO-GDINA is correct. It is shown that the algorithm has a high estimation accuracy for the model. Then the EM algorithm parameter estimation and concrete analysis of the classical data of "fractional subtraction" are carried out by using the special form HO-DINA model of saturated model under constraint conditions. The application of HO-GDINA in practice is demonstrated and compared with the results obtained by MCMC estimation algorithm before de la Torre. It is further shown that the EM algorithm for parameter estimation of HO-GDINA model is still applicable in the special form of the actual situation.
【作者單位】: 北京第五中學(xué)分校;中國基礎(chǔ)教育質(zhì)量監(jiān)測協(xié)同創(chuàng)新中心;中國教育大數(shù)據(jù)研究院;
【基金】:國家自然科學(xué)基金面上項目(31371047)
【分類號】:B842.1
,
本文編號:1517697
本文鏈接:http://sikaile.net/shekelunwen/xinlixingwei/1517697.html
最近更新
教材專著