新型雜化納米材料的合成及其催化和生物應用
發(fā)布時間:2023-05-14 19:53
有機污染物造成的水污染是人類和環(huán)境生態(tài)系統(tǒng)的嚴重問題;瘖y品、紡織、塑料、造紙、食品加工等多個工廠使用大量的染料。由于染料不可生物降解的性質,染料向水圈(河流、湖泊、海洋等)的排放給人類社會帶來了許多挑戰(zhàn)。此外,非常低濃度的染料(<1 mg/L)對水體生態(tài)的影響也是顯著的。同樣,醫(yī)院中與醫(yī)療保健相關的感染對醫(yī)療保健系統(tǒng)造成嚴重的經濟后果。大多數諾氏菌感染是由耐藥或耐多藥細菌產生的,如大腸桿菌、金黃色葡萄球菌和β溶血性鏈球菌。新型抗菌材料的設計是制定控制醫(yī)療相關感染新戰(zhàn)略的最重要挑戰(zhàn)之一。此外,還特別關注抗氧化活性高的天然物質。事實上,由多種因素弓起的氧化應激是許多病理狀況產生的主要原因,如炎癥、癌癥、冠心病甚至皮膚老化。為了克服所有這些問題,設計新材料已成為研究人員應對現實世界中迫切需要的一大挑戰(zhàn)。為了達到這一目標,人們非常重視開發(fā)新的路線,以設計和合成具有理想性能的材料。因此,研究者已作出努力,以最低的生產成本研制多種卓越的功能化新復合材料。本論文研究致力于研究構建新型高效、優(yōu)異穩(wěn)定性和可重復使用性的雜化復合材料,并開展多種應用研究。以下是本文研究的內容:1、本文報道了一種使用...
【文章頁數】:177 頁
【學位級別】:博士
【文章目錄】:
Abstract
摘要
Chapter 1 General Introduction
1.1 Introduction
1.2 History and development of nanomaterials
1.3 Types of nanomaterials
1.3.1 Composite-based metal organic hybrid nanomaterials
1.3.2 Carbon-based nanomaterials
1.3.3 Inorganic-based nanomaterials
1.3.4 Organic-based nanomaterials
1.3.4.1 Biopolymers
1.3.4.2 Synthetic polymers
1.4 Ligands for metal organic hybrid nanocomposites
1.5 Properties of metal organic hybrid nanocomposites
1.6 Metal organic hybrid nanomaterials as a biomimetic catalyst
1.7 Metalloenzyme
1.7.1 Laccase like mimic behavior
1.8 Metal organic hybrid nanomaterials in water treatment
1.9 Antimicrobial activity of Metal organic hybrid nanomaterials
1.10 Hybrid nanomaterials
1.11 Different method of synthesis for hybrid nanomaterials
1.12 Need for eco-benign synthesis
1.13 Applications of hybrid nanocomposite
1.13.1 Antibacterial activity of hybrid nanocomposite
1.13.2 Photocatalytic activity of hybrid nanocomposite
1.13.3 Antioxidant activity of hybrid nanocomposite
1.14 Aims and objectives
1.14.1 Objective 1
1.14.2 Objective 2
1.14.3 Objective 3
Chapter 2 Facile synthesis of laccase mimic CuH3BTC MOF for efficient dye degradation anddetection of phenolic pollutants
2.1 Experimental materials
2.2 Experimental methods
2.2.1 Preparation of Cu/H3BTC MOF
2.2.2 Characterization of Cu/H3BTC MOF
2.2.3 Effect of Cu/H3BTC MOF and laccase on AB-10B degradation
2.2.4 Catalytic stability of Cu/H3BTC MOF on AB-10B degradation
2.2.5 Laccase-like mimic activity of Cu/H3BTC MOF
2.2.6 Evaluation of catalytic stability of Cu/H3BTC MOF
2.2.7 Catalytic oxidation of epinephrine by Cu/H3BTC MOF and laccase
2.3 Analysis of experimental results
2.3.1 Laccase-like activity of Cu/H3BTC MOF
2.3.2 Structural characterization
2.3.3 Degradation of AB-10B at different time intervals
2.3.4 Degradation stability and recyclability of Cu/H3BTC MOF
2.3.5 Catalytic detection of phenolic pollutants by Cu/H3BTC MOF
2.3.6 Detection of epinephrine based on Cu/H3BTC MOF
2.3.7 Catalytic stability of Cu/H3BTC MOF
2.4 Summary
Chapter 3 Cu/H3BTC MOF as a potential antibacterial therapeutic agent against Staphylococcusaureus and Escherichia coli
3.1 Experimental Materials
3.2 Experimental Methods
3.2.1 Synthesis of Cu/H3BTC MOF
3.2.2 Bacterial strains and culture
3.2.3 Diameter of inhibition zone
3.2.4 Elucidation of minimum inhibitory concentration (MIC)
3.2.5 Time-kill assay
3.2.6 Scanning electron microscopy(SEM)
3.2.7 Confocal laser scanning microscopy (CLSM) study
3.2.8 Integrity of cell membrane
3.2.9 Agarose gel electrophoresis for DNA fragmentation
3.3 Analysis of experimental results
3.3.1 Diameter of inhibition zone of Cu/H3BTC MOF
3.3.2 Minimum inhibitory concentration (MIC)
3.3.3 Time-kill assay
3.3.4 Scanning electron microscope observation
3.3.5 Confocal laser scanning microscopy
3.3.6 Integrity of cell membrane
3.3.7 Agarose gel electrophoresis for DNA fragmentation
3.4 Summary
Chapter 4 Facile and eco-benign synthesis of Au@Fe2O3 nanocomposite:efficientphotocatalytic, antibacterial and antioxidant agent
4.1 Experimental Materials
4.2 Experimental Methods
4.2.1 Preparation of Citrus sinensis fruit extract
4.2.2 Green synthesis of Fe2O3 seed nanoparticles
4.2.3 Synthesis of Au@Fe2O3 nanocomposite
4.3 Characterization
4.4 Evaluation of photocatalytic activity
4.5 Free radical scavenging analysis
4.6 Green synthesized Au@Fe2O3 for antimicrobial assay
4.6.1 Bacterial strains
4.6.2 Assessment of antibacterial activity
4.6.3 Estimation of minimum inhibitory concentration (MIC)
4.7 Analysis of Experimental results
4.7.1 Optical studies
4.7.2 XRD analysis
4.7.3 SEM and EDX studies
4.7.4 FTIR analysis
4.7.5 Zeta potential
4.7.6 Photocatalytic activity
4.7.7 DPPH free radical scavenging assay
4.8 Antibacterial activity
4.8.1 Mechanism of action of Au@Fe2O3 against bacteria
4.8.2 MIC of Au@Fe2O3
4.9 Summary
Chapter 5 Conclusion
5.1 Conclusion
5.2 Obtained objectives of research work
5.3 Further perspectives/suggestions
5.4 Novelty Statement
References
Acknowledgements
List of Publications
Introduction of the author
導師簡介
附件
本文編號:3817657
【文章頁數】:177 頁
【學位級別】:博士
【文章目錄】:
Abstract
摘要
Chapter 1 General Introduction
1.1 Introduction
1.2 History and development of nanomaterials
1.3 Types of nanomaterials
1.3.1 Composite-based metal organic hybrid nanomaterials
1.3.2 Carbon-based nanomaterials
1.3.3 Inorganic-based nanomaterials
1.3.4 Organic-based nanomaterials
1.3.4.1 Biopolymers
1.3.4.2 Synthetic polymers
1.4 Ligands for metal organic hybrid nanocomposites
1.5 Properties of metal organic hybrid nanocomposites
1.6 Metal organic hybrid nanomaterials as a biomimetic catalyst
1.7 Metalloenzyme
1.7.1 Laccase like mimic behavior
1.8 Metal organic hybrid nanomaterials in water treatment
1.9 Antimicrobial activity of Metal organic hybrid nanomaterials
1.10 Hybrid nanomaterials
1.11 Different method of synthesis for hybrid nanomaterials
1.12 Need for eco-benign synthesis
1.13 Applications of hybrid nanocomposite
1.13.1 Antibacterial activity of hybrid nanocomposite
1.13.2 Photocatalytic activity of hybrid nanocomposite
1.13.3 Antioxidant activity of hybrid nanocomposite
1.14 Aims and objectives
1.14.1 Objective 1
1.14.2 Objective 2
1.14.3 Objective 3
Chapter 2 Facile synthesis of laccase mimic CuH3BTC MOF for efficient dye degradation anddetection of phenolic pollutants
2.1 Experimental materials
2.2 Experimental methods
2.2.1 Preparation of Cu/H3BTC MOF
2.2.2 Characterization of Cu/H3BTC MOF
2.2.3 Effect of Cu/H3BTC MOF and laccase on AB-10B degradation
2.2.4 Catalytic stability of Cu/H3BTC MOF on AB-10B degradation
2.2.5 Laccase-like mimic activity of Cu/H3BTC MOF
2.2.6 Evaluation of catalytic stability of Cu/H3BTC MOF
2.2.7 Catalytic oxidation of epinephrine by Cu/H3BTC MOF and laccase
2.3 Analysis of experimental results
2.3.1 Laccase-like activity of Cu/H3BTC MOF
2.3.2 Structural characterization
2.3.3 Degradation of AB-10B at different time intervals
2.3.4 Degradation stability and recyclability of Cu/H3BTC MOF
2.3.5 Catalytic detection of phenolic pollutants by Cu/H3BTC MOF
2.3.6 Detection of epinephrine based on Cu/H3BTC MOF
2.3.7 Catalytic stability of Cu/H3BTC MOF
2.4 Summary
Chapter 3 Cu/H3BTC MOF as a potential antibacterial therapeutic agent against Staphylococcusaureus and Escherichia coli
3.1 Experimental Materials
3.2 Experimental Methods
3.2.1 Synthesis of Cu/H3BTC MOF
3.2.2 Bacterial strains and culture
3.2.3 Diameter of inhibition zone
3.2.4 Elucidation of minimum inhibitory concentration (MIC)
3.2.5 Time-kill assay
3.2.6 Scanning electron microscopy(SEM)
3.2.7 Confocal laser scanning microscopy (CLSM) study
3.2.8 Integrity of cell membrane
3.2.9 Agarose gel electrophoresis for DNA fragmentation
3.3 Analysis of experimental results
3.3.1 Diameter of inhibition zone of Cu/H3BTC MOF
3.3.2 Minimum inhibitory concentration (MIC)
3.3.3 Time-kill assay
3.3.4 Scanning electron microscope observation
3.3.5 Confocal laser scanning microscopy
3.3.6 Integrity of cell membrane
3.3.7 Agarose gel electrophoresis for DNA fragmentation
3.4 Summary
Chapter 4 Facile and eco-benign synthesis of Au@Fe2O3 nanocomposite:efficientphotocatalytic, antibacterial and antioxidant agent
4.1 Experimental Materials
4.2 Experimental Methods
4.2.1 Preparation of Citrus sinensis fruit extract
4.2.2 Green synthesis of Fe2O3 seed nanoparticles
4.2.3 Synthesis of Au@Fe2O3 nanocomposite
4.3 Characterization
4.4 Evaluation of photocatalytic activity
4.5 Free radical scavenging analysis
4.6 Green synthesized Au@Fe2O3 for antimicrobial assay
4.6.1 Bacterial strains
4.6.2 Assessment of antibacterial activity
4.6.3 Estimation of minimum inhibitory concentration (MIC)
4.7 Analysis of Experimental results
4.7.1 Optical studies
4.7.2 XRD analysis
4.7.3 SEM and EDX studies
4.7.4 FTIR analysis
4.7.5 Zeta potential
4.7.6 Photocatalytic activity
4.7.7 DPPH free radical scavenging assay
4.8 Antibacterial activity
4.8.1 Mechanism of action of Au@Fe2O3 against bacteria
4.8.2 MIC of Au@Fe2O3
Chapter 5 Conclusion
5.1 Conclusion
5.2 Obtained objectives of research work
5.3 Further perspectives/suggestions
5.4 Novelty Statement
References
Acknowledgements
List of Publications
Introduction of the author
導師簡介
附件
本文編號:3817657
本文鏈接:http://sikaile.net/projectlw/hxgylw/3817657.html
最近更新
教材專著