求非線性系統(tǒng)對(duì)稱群的新方法
發(fā)布時(shí)間:2022-01-20 03:22
(1)從Lax可積系統(tǒng)的Lax對(duì)出發(fā),尋找非線性系統(tǒng)的對(duì)稱及精確解,利用這種方法可以解決不少(2+1)維的可積系統(tǒng),它的優(yōu)點(diǎn)在于比較簡(jiǎn)潔方便,這從KP方程的求解對(duì)比就可以看出.(2)從CK直接法入手,將這種方法進(jìn)行修正,利用這種修正的CK直接法求非線性系統(tǒng)的對(duì)稱和精確解;這種方法的最大優(yōu)點(diǎn)在于不但可以用于可積系統(tǒng),而且也適用于不可積系統(tǒng),還可以求出離散群.另外,這種方法也適用于高維的不可積模型.
【文章來(lái)源】:寧波大學(xué)學(xué)報(bào)(理工版). 2020,33(05)
【文章頁(yè)數(shù)】:7 頁(yè)
【參考文獻(xiàn)】:
期刊論文
[1]Finite Symmetry Transformation Groups and Exact Solutions of Lax Integrable Systems[J]. MA Hong-Cai;LOU Sen-Yue Physics Department, Shanghai Jiao Tong University, Shanghai 200030, China Physics Department, Ningbo University, Ningbo 315211, China Mathematics Department, Donghua University, Shanghai 200051, China. Communications in Theoretical Physics. 2005(08)
本文編號(hào):3598078
【文章來(lái)源】:寧波大學(xué)學(xué)報(bào)(理工版). 2020,33(05)
【文章頁(yè)數(shù)】:7 頁(yè)
【參考文獻(xiàn)】:
期刊論文
[1]Finite Symmetry Transformation Groups and Exact Solutions of Lax Integrable Systems[J]. MA Hong-Cai;LOU Sen-Yue Physics Department, Shanghai Jiao Tong University, Shanghai 200030, China Physics Department, Ningbo University, Ningbo 315211, China Mathematics Department, Donghua University, Shanghai 200051, China. Communications in Theoretical Physics. 2005(08)
本文編號(hào):3598078
本文鏈接:http://sikaile.net/kejilunwen/yysx/3598078.html
最近更新
教材專(zhuān)著