天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

Chen’s Inequalities in A (κ,μ)-contact Space Form

發(fā)布時(shí)間:2021-07-25 23:13
  To find the simple relationship between the extrinsic and intrinsic invariants of submanifold is one of the basic problems in submanifold theory.B.-Y.Chen established inequalities in this respect,called Chen inequalities.The main intrinsic invariants include Chen’s δ-invariant,scalar curvature,Ricci curvature,K-Ricci curvature and so on.The main extrinsic invariants are squared mean curvature and shape operator.Chen inequalities include Chen’s first inequality,Chen’s Ricci inequalities and so on... 

【文章來源】:南京理工大學(xué)江蘇省 211工程院校

【文章頁數(shù)】:43 頁

【學(xué)位級(jí)別】:碩士

【文章目錄】:
Abstract
Chapter 1 Introduction
    1.1 Riemannian Manifolds
    1.2 Symmetric connection
    1.3 Semi-Symmetric connection
    1.4 Semi-Symmetric metric connection
    1.5 Semi-Symmetric non-metric connection
    1.6 Chen's first inequality
Chapter 2 Preliminaries
Chapter 3 Main works
    3.1 Inequalities with respect to Semi-Symmetric metric connection
        3.1.1 Chen first inequality
        3.1.2 Ricci and k-Ricci curvature
    3.2 Inequalities for Semi-Symmetric Non-mctric connection
        3.2.1 Chen's first inequality
        3.2.2 Ricci curvature and k-Ricci Curvatures
Acknowledgements
Bibliography


【參考文獻(xiàn)】:
期刊論文
[1]SLANT IMMERSIONS OF COMPLEX SPACE FORMS AND CHEN’S INEQUALITY[J]. 李光漢,吳傳喜.  Acta Mathematica Scientia. 2005(02)



本文編號(hào):3302963

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/3302963.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b24e8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com