幾類耦合非線性動力學系統(tǒng)周期解的研究
發(fā)布時間:2021-04-06 14:31
在過去的幾十年里,隨著科學技術的進步和理論研究的不斷深入,非線性問題已經(jīng)受到人們廣泛的關注.而非線性動力學的研究主要集中在分岔,混沌和孤子這三個方面,由于非線性方程的精確解很難得出,所以尋求近似解的方法變得至關重要.目前研究非線性問題的方法主要有攝動法、諧波平衡法、多尺度法、同倫分析方法等.本文主要研究了幾類耦合非線性動力學系統(tǒng)的動態(tài)響應行為.第一章介紹了非線性動力學的研究背景以及同倫分析方法、多尺度方法和多頻同倫分析方法應用于非線性系統(tǒng)的研究現(xiàn)狀.第二章采用多尺度方法和同倫分析方法研究了具有參數(shù)激勵van der Pol系統(tǒng)的主共振.首先研究了內共振比值不同時耦合系統(tǒng)的非線性動力響應,并用多尺度法得到了直角坐標系下的四維平均方程,從而發(fā)現(xiàn)系統(tǒng)存在周期運動;其次,利用同倫分析方法,得到四組周期解,其中兩組正向周期解和兩組反向周期解.最后,我們發(fā)現(xiàn)通過這兩種方法得到的頻率響應曲線是吻合的.第三章運用多頻同倫分析方法研究二自由度非線性耦合Duffing系統(tǒng).一方面,我們通過構造用多頻同倫分析方法求解兩自由度非線性動力系統(tǒng)的步驟,得到了Duffing系統(tǒng)單倍周期解和二倍周期解;另一方面,我們...
【文章來源】:浙江師范大學浙江省
【文章頁數(shù)】:49 頁
【學位級別】:碩士
【部分圖文】:
圖2.1?1?:?1和2?:?1內共振的相圖??Figure?2.1?The?phase?diagram?of?1?:?1?and?2?:?1?internal?resonance.??
圖2.4?1?:?1和2?:?1內共振的功率譜??Figure?2.4?The?power?spectrum?curve?of?1?:?1?and?2?:?1?internal?resonance.??
圖2.4?1?:?1和2?:?1內共振的功率譜??Figure?2.4?The?power?spectrum?curve?of?1?:?1?and?2?:?1?internal?resonance.??
【參考文獻】:
期刊論文
[1]基于多尺度法索-橋耦合非線性動力響應分析[J]. 李鳳臣,楊鷗,田石柱,張麗娜. 沈陽建筑大學學報(自然科學版). 2013(05)
[2]Approximate Solutions of Primary Resonance for Forced Duffing Equation by Means of the Homotopy Analysis Method[J]. YUAN Peixin 1,and LI Yongqiang 2 1 School of Mechanical Engineering & Automation,Northeastern University,Shenyang 110004,China 2 School of Science,Northeastern University,Shenyang 110004,China. Chinese Journal of Mechanical Engineering. 2011(03)
[3]Nonlinear oscillations with parametric excitation solved by homotopy analysis method[J]. Jianmin Wen Zhengcai Cao School of Shipbuilding Engineering,Harbin Institute of Technology at Weihai,Weihai 264209,China CIMS Research Center,Tongji University,Shanghai 200092,China. Acta Mechanica Sinica. 2008(03)
本文編號:3121606
【文章來源】:浙江師范大學浙江省
【文章頁數(shù)】:49 頁
【學位級別】:碩士
【部分圖文】:
圖2.1?1?:?1和2?:?1內共振的相圖??Figure?2.1?The?phase?diagram?of?1?:?1?and?2?:?1?internal?resonance.??
圖2.4?1?:?1和2?:?1內共振的功率譜??Figure?2.4?The?power?spectrum?curve?of?1?:?1?and?2?:?1?internal?resonance.??
圖2.4?1?:?1和2?:?1內共振的功率譜??Figure?2.4?The?power?spectrum?curve?of?1?:?1?and?2?:?1?internal?resonance.??
【參考文獻】:
期刊論文
[1]基于多尺度法索-橋耦合非線性動力響應分析[J]. 李鳳臣,楊鷗,田石柱,張麗娜. 沈陽建筑大學學報(自然科學版). 2013(05)
[2]Approximate Solutions of Primary Resonance for Forced Duffing Equation by Means of the Homotopy Analysis Method[J]. YUAN Peixin 1,and LI Yongqiang 2 1 School of Mechanical Engineering & Automation,Northeastern University,Shenyang 110004,China 2 School of Science,Northeastern University,Shenyang 110004,China. Chinese Journal of Mechanical Engineering. 2011(03)
[3]Nonlinear oscillations with parametric excitation solved by homotopy analysis method[J]. Jianmin Wen Zhengcai Cao School of Shipbuilding Engineering,Harbin Institute of Technology at Weihai,Weihai 264209,China CIMS Research Center,Tongji University,Shanghai 200092,China. Acta Mechanica Sinica. 2008(03)
本文編號:3121606
本文鏈接:http://sikaile.net/kejilunwen/yysx/3121606.html
最近更新
教材專著