歐拉示性數(shù)為負(fù)素?cái)?shù)平方的雙旋轉(zhuǎn)地圖
發(fā)布時(shí)間:2021-02-27 06:08
地圖是從一個(gè)圖Γ到一個(gè)曲面S的嵌入,使得每個(gè)S\(V∪E)的連通分支都同胚于一個(gè)開圓盤。研究地圖的數(shù)學(xué)理論稱為地圖論或稱拓?fù)鋱D論,它是組合學(xué)的一個(gè)分支。依照將點(diǎn),線,面分別看作支撐曲面上的0維胞腔,1維胞腔,2維胞腔的觀點(diǎn),我們可以看出對(duì)于每一個(gè)地圖,我們都可以定義歐拉示性數(shù),即面的個(gè)數(shù)加上點(diǎn)的個(gè)數(shù)減去邊的個(gè)數(shù),或用拓?fù)涞恼Z言表達(dá),就是0維胞腔個(gè)數(shù)加上2維胞腔個(gè)數(shù)減去1維胞腔個(gè)數(shù)。歐拉示性數(shù)或稱歐拉公式是經(jīng)典地圖理論的一個(gè)著名定理,它聯(lián)系了多面體,拓?fù)浜颓蛎孢@些當(dāng)時(shí)的重點(diǎn)研究對(duì)象。地圖的歐拉示性數(shù)是地圖非常重要的一個(gè)特征,因?yàn)閺乃梢钥闯鲈S多地圖的有趣性質(zhì)。它是地圖論的一個(gè)經(jīng)典研究對(duì)象。最近幾十年,地圖論的內(nèi)涵大大擴(kuò)展了,傳統(tǒng)的看待地圖的觀點(diǎn)被擴(kuò)充成了三種,分別對(duì)應(yīng)拓?fù)淅碚?黎曼幾何理論以及群論。以群論的觀點(diǎn),具有某種對(duì)稱性的地圖可以由一個(gè)群和它的一些陪集表出,故而具有高對(duì)稱性的地圖與群論具有很深的聯(lián)系,類似的聯(lián)系同樣體現(xiàn)在了高對(duì)稱性圖與群論之間的關(guān)系。一個(gè)地圖M的自同構(gòu)是旗集上保鄰接關(guān)系的一個(gè)置換。所有這些置換構(gòu)成一個(gè)自同構(gòu)群,記作Aut(M).Aut(M)在旗集上的作用半正則,如果...
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:66 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
ABSTRACT
Notations
Chapter 1 Introduction
1.1 Background and Significance
1.1.1 Research Background
1.1.2 Significance
1.2 Structure of the Thesis
1.3 Brief Summary
Chapter 2 Preliminary Knowledge
2.1 Basic Results in Topology Theory
2.1.1 Basic Concepts in Topology Theory
2.1.2 Fundamental Groups
2.1.3 Manifolds and Surfaces
2.1.4 Homology Groups and the Classification Theorem of Closed surfaces
2.2 Graph Theory
2.2.1 Some Basic Concepts in Graph Theory
2.2.2 Symmetric Graphs
2.3 Basic Results in Map Theory
2.4 Preliminary Knowledge of Group Theory
2.4.1 Basic Concepts in Group Theory
2.4.2 Permutation Groups
2.5 Brief Summary
Chapter 3 Soluble Groups and Projective Special Linear Groups
3.1 Soluble Groups
3.2 Classical Simple Groups
3.3 Brief Summary
Chapter 4 Preliminary Observations
4.1 Poincare Lemma
4.2 A Special Case in Bi-rotary Map
4.3 Brief Summary
Chapter 5 The Classification of bi-rotary maps of negative prime squarecharacteristic
5.1 p?|G|
5.2 p‖|G|
2||G|"> 5.3 p2||G|
5.4 Brief Summary
Conclusions
結(jié)論
References
Acknowledgements
本文編號(hào):3053805
【文章來源】:哈爾濱工業(yè)大學(xué)黑龍江省 211工程院校 985工程院校
【文章頁數(shù)】:66 頁
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
ABSTRACT
Notations
Chapter 1 Introduction
1.1 Background and Significance
1.1.1 Research Background
1.1.2 Significance
1.2 Structure of the Thesis
1.3 Brief Summary
Chapter 2 Preliminary Knowledge
2.1 Basic Results in Topology Theory
2.1.1 Basic Concepts in Topology Theory
2.1.2 Fundamental Groups
2.1.3 Manifolds and Surfaces
2.1.4 Homology Groups and the Classification Theorem of Closed surfaces
2.2 Graph Theory
2.2.1 Some Basic Concepts in Graph Theory
2.2.2 Symmetric Graphs
2.3 Basic Results in Map Theory
2.4 Preliminary Knowledge of Group Theory
2.4.1 Basic Concepts in Group Theory
2.4.2 Permutation Groups
2.5 Brief Summary
Chapter 3 Soluble Groups and Projective Special Linear Groups
3.1 Soluble Groups
3.2 Classical Simple Groups
3.3 Brief Summary
Chapter 4 Preliminary Observations
4.1 Poincare Lemma
4.2 A Special Case in Bi-rotary Map
4.3 Brief Summary
Chapter 5 The Classification of bi-rotary maps of negative prime squarecharacteristic
5.1 p?|G|
5.2 p‖|G|
2||G|"> 5.3 p2||G|
5.4 Brief Summary
Conclusions
結(jié)論
References
Acknowledgements
本文編號(hào):3053805
本文鏈接:http://sikaile.net/kejilunwen/yysx/3053805.html
最近更新
教材專著