天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 數(shù)學(xué)論文 >

帶有完全非線性項(xiàng)的四階邊值問題的多正解性

發(fā)布時間:2021-02-26 17:31
  本文討論四階兩點(diǎn)邊值問題{u(4)(t)=f (t, u(t), u′(t), u′′(t), u′′′(t)), t∈(0, 1),u(0)=u′(0)=u′′(1)=u′′′(1)=0.這里非線性項(xiàng)f中含有項(xiàng)u′,u′′和u′′′,因而該問題為帶有完全非線性項(xiàng)的四階邊值問題.運(yùn)用LeggettWilliams型的兩個不動點(diǎn)定理,在f滿足一定條件的情況下,獲得了該問題至少存在兩個或者三個正解的結(jié)果.最后舉例驗(yàn)證了所獲定理的有效性. 

【文章來源】:華東師范大學(xué)學(xué)報(bào)(自然科學(xué)版). 2020,(06)北大核心

【文章頁數(shù)】:8 頁

【參考文獻(xiàn)】:
期刊論文
[1]奇異四階三點(diǎn)邊值問題正解的存在性[J]. 達(dá)舉霞,韓曉玲.  四川大學(xué)學(xué)報(bào)(自然科學(xué)版). 2017(03)
[2]四階微分方程奇異邊值問題解的唯一性[J]. 崔玉軍,趙聰.  山東大學(xué)學(xué)報(bào)(理學(xué)版). 2017(02)
[3]一類四階兩點(diǎn)邊值問題多個正解的存在性[J]. 盧整智,韓曉玲.  西南大學(xué)學(xué)報(bào)(自然科學(xué)版). 2013(04)
[4]一類四階邊值問題的正解的存在性與多重性[J]. 王云杰,朱江.  中山大學(xué)學(xué)報(bào)(自然科學(xué)版). 2012(01)
[5]四階兩點(diǎn)常微分方程邊值問題解的存在性[J]. 席進(jìn)華.  山東大學(xué)學(xué)報(bào)(理學(xué)版). 2009(01)
[6]一類四階兩點(diǎn)邊值問題的可解性[J]. 馬如云.  應(yīng)用數(shù)學(xué). 1997(02)



本文編號:3052922

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/3052922.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶14fae***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com