有限半環(huán)和半環(huán)簇的若干研究
發(fā)布時(shí)間:2020-12-07 00:06
本文主要研究了一些有限半環(huán)生成的簇及其子簇格,得到了一些有意義的結(jié)果,所得研究成果可分為以下四部分.第一部分,給出了由二階加法完全正則乘法冪等半環(huán)L2,R2,D2,Z2生成的半環(huán)簇HSP(L2,R2,D2,Z2)中半環(huán)的分解定理,證明了半環(huán)簇HSP(L2,R2,D2,Z2)中的次直不可約環(huán)只有Z2.借助上述結(jié)果,本部分還刻畫了半環(huán)簇HSP(L2,R2,D2,Z2)的子簇格L(HSP(L2,R2,D2,Z2)),證明了此格中的每一個(gè)成員都是有限基的.在此基礎(chǔ)上,證明了由所有的二階加法完全正則乘法冪等半環(huán)L2,R2,D2,Z2,M2生成的半環(huán)簇HSP(L2,R2,D2,Z2,M2)的子簇格L(HSP(L2,R2,D2,Z2,M2))是一個(gè)32-階的布爾代數(shù).第二部分,給出了半環(huán)簇Rn和加法冪等半環(huán)簇N∩ Sl+的Mal’cev積Rn。(N∩ Sl+)中半環(huán)的分解定理,證明了 Mal’cev積RO(N∩S)是由附加恒等式xn≈x和x +(2n-2)xyx≈x定義的一個(gè)半環(huán)簇,且有RnO(N∩ Sl+)= Rn∨(N∩ Sl+),另外,本部分還刻畫了 RnO(N∩Sl+)中的次直不可約成員,證...
【文章來源】:西北大學(xué)陜西省 211工程院校
【文章頁數(shù)】:105 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
ABSTRACT
第一章 前言
§1.1 半環(huán)及半環(huán)簇的研究背景及其進(jìn)展
§1.2 本文的工作
第二章 預(yù)備知識
§2.1 半環(huán)
§2.2 字母、字和項(xiàng)
§2.3 等式、簇、自由對象和字問題
§2.4 子簇格、次直不可約成員、Mal'cev積
§2.5 某些二階半環(huán)的等式基
第三章 二階加法完全正則乘法冪等半環(huán)生成的簇
2, R2,D2,Z2)的子簇"> §3.1 HSP(L2, R2,D2,Z2)的子簇
2, R2,D2, Z2, M2)的簇"> §3.2 HSP(L2, R2,D2, Z2, M2)的簇
n≈x的半環(huán)簇">第四章 滿足等式xn≈x的半環(huán)簇
nO(N∩(?)l)"> §4.1 半環(huán)簇RnO(N∩(?)l)
nO(N∩(?)l)的子簇"> §4.2 半環(huán)簇RnO(N∩(?)l)的子簇
p+1≈x的加法冪等半環(huán)簇">第五章 滿足xp+1≈x的加法冪等半環(huán)簇
§5.1 一些輔助結(jié)果和符號
p+1
O的自由對象"> §5.2 SAp+1
O的自由對象
p+1
O的子簇格"> §5.3 ROBAp+1
O的子簇格
k=1
m xk)n≈Πk=1
m=1 xk的加法冪等半環(huán)簇">第六章 滿足(Πk=1
m xk)n≈Πk=1
m=1 xk的加法冪等半環(huán)簇
§6.1 (m,n,1)-閉子集
§6.2 Sr(m,n,1)的自由對象
總結(jié)
參考文獻(xiàn)
攻讀博士學(xué)位期間取得的科研成果
致謝
作者簡介
本文編號:2902243
【文章來源】:西北大學(xué)陜西省 211工程院校
【文章頁數(shù)】:105 頁
【學(xué)位級別】:博士
【文章目錄】:
摘要
ABSTRACT
第一章 前言
§1.1 半環(huán)及半環(huán)簇的研究背景及其進(jìn)展
§1.2 本文的工作
第二章 預(yù)備知識
§2.1 半環(huán)
§2.2 字母、字和項(xiàng)
§2.3 等式、簇、自由對象和字問題
§2.4 子簇格、次直不可約成員、Mal'cev積
§2.5 某些二階半環(huán)的等式基
第三章 二階加法完全正則乘法冪等半環(huán)生成的簇
2, R2,D2,Z2)的子簇"> §3.1 HSP(L2, R2,D2,Z2)的子簇
2, R2,D2, Z2, M2)的簇"> §3.2 HSP(L2, R2,D2, Z2, M2)的簇
n≈x的半環(huán)簇">第四章 滿足等式xn≈x的半環(huán)簇
nO(N∩(?)l)"> §4.1 半環(huán)簇RnO(N∩(?)l)
nO(N∩(?)l)的子簇"> §4.2 半環(huán)簇RnO(N∩(?)l)的子簇
p+1≈x的加法冪等半環(huán)簇">第五章 滿足xp+1≈x的加法冪等半環(huán)簇
§5.1 一些輔助結(jié)果和符號
p+1
O的自由對象"> §5.2 SAp+1
O的自由對象
p+1
O的子簇格"> §5.3 ROBAp+1
O的子簇格
k=1
m xk)n≈Πk=1
m=1 xk的加法冪等半環(huán)簇">第六章 滿足(Πk=1
m xk)n≈Πk=1
m=1 xk的加法冪等半環(huán)簇
§6.1 (m,n,1)-閉子集
§6.2 Sr(m,n,1)的自由對象
總結(jié)
參考文獻(xiàn)
攻讀博士學(xué)位期間取得的科研成果
致謝
作者簡介
本文編號:2902243
本文鏈接:http://sikaile.net/kejilunwen/yysx/2902243.html
最近更新
教材專著