幾類隨機(jī)泛函微分方程數(shù)值解的收斂性和穩(wěn)定性
【學(xué)位授予單位】:哈爾濱工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2018
【分類號(hào)】:O241.8
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 田繼青;張超龍;郭承軍;;一類二階具多時(shí)滯次二次增長(zhǎng)條件泛函微分方程同宿軌的存在性[J];汕頭大學(xué)學(xué)報(bào)(自然科學(xué)版);2017年01期
2 郝兆才;孔盟;;一類奇異泛函微分方程邊值問(wèn)題的多重正解[J];數(shù)學(xué)雜志;2013年01期
3 楊雯抒;;一階非線性泛函微分方程的振動(dòng)準(zhǔn)則[J];貴州師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年05期
4 林壯鵬;林瀚;陳雯雯;;一類變時(shí)滯泛函微分方程的解[J];高等數(shù)學(xué)研究;2012年01期
5 趙憲民;;時(shí)滯泛函微分方程解的唯一性和漸近性分析[J];河北北方學(xué)院學(xué)報(bào)(自然科學(xué)版);2012年05期
6 宋利梅;翁佩萱;;四階泛函微分方程邊值問(wèn)題正解的存在性[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯;2011年01期
7 魏鳳英;;B空間中無(wú)限時(shí)滯隨機(jī)泛函微分方程解的估計(jì)(英文)[J];應(yīng)用數(shù)學(xué);2011年04期
8 陳新一;;一類二階時(shí)滯泛函微分方程的周期解[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年01期
9 劉穎;朱宏偉;;一類具有分布時(shí)滯的二階泛函微分方程周期解[J];哈爾濱商業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年01期
10 胡秀林;周宗福;;脈沖時(shí)滯泛函微分方程正周期解的存在性[J];合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年04期
相關(guān)會(huì)議論文 前3條
1 張穎;何怡剛;王耀宇;;一類具有變時(shí)滯的二元神經(jīng)網(wǎng)絡(luò)方程邊值問(wèn)題的數(shù)值解法[A];第二十屆電工理論學(xué)術(shù)年會(huì)論文集[C];2008年
2 牛文清;董瑩;;泛函偏微分方程邊值問(wèn)題解的漸近性態(tài)[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)研究進(jìn)展——2004(10)卷——中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會(huì)第10屆學(xué)術(shù)研討會(huì)論文集[C];2004年
3 吳曉非;;一類泛函微分方程的周期解[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)交叉研究進(jìn)展——2010(13)卷[C];2010年
相關(guān)重要報(bào)紙文章 前2條
1 本報(bào)通訊員 張強(qiáng) 朱玉尊 本報(bào)記者 吳春燕;學(xué)校發(fā)展要“跳起來(lái)摘桃子”[N];光明日?qǐng)?bào);2004年
2 聶國(guó)軍;學(xué)者名師[N];光明日?qǐng)?bào);2002年
相關(guān)博士學(xué)位論文 前10條
1 張偉;幾類隨機(jī)泛函微分方程數(shù)值解的收斂性和穩(wěn)定性[D];哈爾濱工業(yè)大學(xué);2018年
2 陳國(guó)平;幾類脈沖泛函微分方程定性研究及應(yīng)用[D];湖南師范大學(xué);2008年
3 常永奎;多值泛函微分方程的存在性和可控性[D];蘭州大學(xué);2006年
4 魏鳳英;無(wú)限時(shí)滯隨機(jī)泛函微分方程的基本理論[D];東北師范大學(xué);2006年
5 吳君;幾類泛函微分方程的周期解[D];湖南大學(xué);2006年
6 文立平;抽象空間中非線性Volterra泛函微分方程的數(shù)值穩(wěn)定性分析[D];湘潭大學(xué);2006年
7 楊治國(guó);具有脈沖和隨機(jī)擾動(dòng)的時(shí)滯系統(tǒng)的定性分析[D];四川大學(xué);2007年
8 吳洪武;泛函微分方程解的振動(dòng)性與零點(diǎn)分布[D];中山大學(xué);2004年
9 曹俊飛;隨機(jī)泛函微分方程的概周期性及概自守性研究[D];華南理工大學(xué);2012年
10 張正球;幾類泛函微分方程周期解的存在性[D];湖南大學(xué);2001年
相關(guān)碩士學(xué)位論文 前10條
1 湯穎;一類半線性中立Emden-Fowler型泛函微分方程的振動(dòng)準(zhǔn)則[D];江南大學(xué);2018年
2 陳芳香;中立型隨機(jī)泛函微分方程及隨機(jī)傳染病模型的研究[D];福州大學(xué);2016年
3 王丹丹;隨機(jī)泛函微分方程數(shù)值解的穩(wěn)定性[D];華中科技大學(xué);2016年
4 鄭亮;幾類泛函微分方程周期解以及同宿解問(wèn)題的研究[D];南京信息工程大學(xué);2013年
5 石嵐;一階模糊泛函微分方程解的存在唯一性[D];河北科技大學(xué);2011年
6 武晉霞;一階泛函微分方程周期解的存在性[D];山西大學(xué);2007年
7 周蕾;無(wú)窮時(shí)滯脈沖泛函微分方程的穩(wěn)定性[D];華東師范大學(xué);2006年
8 文慧;幾類泛函微分方程周期解的性態(tài)研究[D];中南大學(xué);2009年
9 劉豪;非線性脈沖泛函微分方程數(shù)值方法的穩(wěn)定性分析[D];湘潭大學(xué);2011年
10 陳改平;具有滯后與超前的泛函微分方程的擬線性化方法[D];河北大學(xué);2011年
,本文編號(hào):2650313
本文鏈接:http://sikaile.net/kejilunwen/yysx/2650313.html