具有混合時(shí)滯的中立型Hopfield神經(jīng)網(wǎng)絡(luò)的概周期解
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳紅兵;何萬生;楊麗新;劉曉君;;N種群互惠系統(tǒng)的漸近概周期解[J];天水師范學(xué)院學(xué)報(bào);2009年02期
2 邱汶華;;一類時(shí)滯擺方程的偽概周期解[J];佛山科學(xué)技術(shù)學(xué)院學(xué)報(bào)(自然科學(xué)版);2010年03期
3 徐建華,鄭祖庥;強(qiáng)平均解與概周期解的存在性[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯(中文版);2000年01期
4 楊啟貴,江佑霖;Willis環(huán)狀腦動(dòng)脈瘤模型的概周期解[J];生物數(shù)學(xué)學(xué)報(bào);2000年03期
5 張子方,蔣建軍,傅英貴,林軍,蘇英;一類擺動(dòng)方程概周期解的存在性[J];浙江大學(xué)學(xué)報(bào)(理學(xué)版);2001年04期
6 廖六生;二元神經(jīng)網(wǎng)絡(luò)模型概周期解的存在性[J];生物數(shù)學(xué)學(xué)報(bào);2001年02期
7 王金華,向紅軍,陳安平;一類二元具時(shí)滯的神經(jīng)網(wǎng)絡(luò)概周期解的存在性和全局吸引性[J];長沙電力學(xué)院學(xué)報(bào)(自然科學(xué)版);2002年02期
8 王全義;一類中立型泛函微分方程的概周期解的存在唯一性與穩(wěn)定性[J];華僑大學(xué)學(xué)報(bào)(自然科學(xué)版);2002年03期
9 林木仁;某類線性系統(tǒng)的指數(shù)型二分性和概周期解及有界解的存在性[J];數(shù)學(xué)研究;2002年04期
10 張曉穎,王克;具時(shí)滯的N種群互惠系統(tǒng)的概周期解[J];東北師大學(xué)報(bào)(自然科學(xué)版);2002年03期
相關(guān)博士學(xué)位論文 前7條
1 楊喜陶;時(shí)滯微分方程的概周期解[D];北京師范大學(xué);2006年
2 王奇;具生物意義的時(shí)滯微分系統(tǒng)的周期解和概周期解問題[D];中南大學(xué);2008年
3 王麗;帶逐段常變量微分方程的概周期解及譜分析[D];哈爾濱工業(yè)大學(xué);2010年
4 倪華;幾類非線性微分方程的周期、概周期解的存在性[D];江蘇大學(xué);2013年
5 李忠;幾類生態(tài)系統(tǒng)穩(wěn)定性和概周期解的問題[D];上海師范大學(xué);2014年
6 趙莉莉;時(shí)標(biāo)上神經(jīng)網(wǎng)絡(luò)的加權(quán)偽概周期解與加權(quán)偽概自守解[D];云南大學(xué);2015年
7 劉炳文;時(shí)滯細(xì)胞神經(jīng)網(wǎng)絡(luò)的周期解、概周期解和全局指數(shù)穩(wěn)定性[D];湖南大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 李姝;幾類離散生物模型的概周期解的存在性[D];湖南師范大學(xué);2015年
2 蔡志華;幾種生物模型的概周期解問題[D];湖南師范大學(xué);2015年
3 張珂溶;具有脈沖或反饋控制的生物模型概周期解的研究[D];湖南師范大學(xué);2015年
4 孫嘉繁;泛函微分方程的概周期型解[D];中國海洋大學(xué);2015年
5 謝小麗;幾類生物模型的周期解和概周期解[D];福州大學(xué);2014年
6 李翠英;幾類生態(tài)模型的概周期解、穩(wěn)定性及持久性的研究[D];福州大學(xué);2014年
7 時(shí)義梅;帶逐段常時(shí)滯二階微分方程的概周期解[D];華南理工大學(xué);2016年
8 閆曉輝;脈沖生物系統(tǒng)的概周期解及收獲問題的研究[D];吉林大學(xué);2010年
9 夏永輝;關(guān)于微分方程概周期解的研究[D];福州大學(xué);2004年
10 王敬豐;中立型泛函微分方程的周期解與概周期解[D];安徽大學(xué);2007年
,本文編號(hào):2566730
本文鏈接:http://sikaile.net/kejilunwen/yysx/2566730.html