天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

二維Lagrangian坐標(biāo)系下可壓氣動(dòng)方程組的間斷Petrov-Galerkin方法(英文)

發(fā)布時(shí)間:2019-05-23 11:14
【摘要】:構(gòu)造矩形網(wǎng)格下求解Lagrangian坐標(biāo)系下氣動(dòng)方程組的單元中心型格式.空間離散采用控制體積間斷Petrov-Galerkin方法,時(shí)間離散采用二階TVD Runge-Kutta方法.利用限制器來(lái)抑制非物理震蕩并保證RKCV算法的穩(wěn)定性.構(gòu)造的算法可以保證物理量的局部守恒.與Runge-Kutta間斷Galerkin(RKDG)方法相比較,RKCV方法的計(jì)算公式少一項(xiàng)積分項(xiàng)使得計(jì)算較簡(jiǎn)單.給出一些數(shù)值算例驗(yàn)證了算法的可靠性及效率.
[Abstract]:An element central scheme for solving pneumatic equations in Lagrangian coordinate system in rectangular grid is constructed. The control volume discontinuity Petrov-Galerkin method is used for spatial discretization, and the second order Runge-Kutta method is used for time discretization. The limiter is used to suppress the non-physical concussion and ensure the stability of the RKCV algorithm. The constructed algorithm can ensure the local conservation of physical quantities. Compared with Runge-Kutta intermittent Galerkin (RKDG) method, the calculation formula of RKCV method is less than one integral term, which makes the calculation easier. Some numerical examples are given to verify the reliability and efficiency of the algorithm.
【作者單位】: 包頭師范學(xué)院數(shù)學(xué)科學(xué)學(xué)院;北京應(yīng)用物理與計(jì)算數(shù)學(xué)研究所計(jì)算物理實(shí)驗(yàn)室;
【基金】:National Natural Science Foundation of China(11261035,11571002) Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region(NJYT-15-A07) Natural Science Foundation of Inner Mongolia Autonomous Region,China(2015MS0108,2012MS0102) Science Research Foundation of Institute of Higher Education of Inner Mongolia Autonomous Region,China(NJZZ12198) Science and Technology Development Foundation of CAEP(2015B0101021) Defense Industrial Technology Development Program(B1520133015)
【分類號(hào)】:O241.82

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 ;An extended Lagrangian support vector machine for classifications[J];Progress in Natural Science;2004年06期

2 Johan FASTENAKELS;;Classification of Flat Lagrangian Surfaces in Complex Lorentzian Plane[J];Acta Mathematica Sinica(English Series);2007年12期

3 ;Complex Lagrangian Manifolds and Resurgent Functions[J];數(shù)學(xué)季刊;1995年04期

4 W.Oettli;Modified Lagrangian and Least Root Approaches for General Nonlinear Optimization Problems[J];Acta Mathematicae Applicatae Sinica(English Series);2002年01期

5 ;An example of special Lagrangian fibration[J];Science in China,Ser.A;2005年08期

6 ;On second order minimal Lagrangian submanifolds in complex space forms[J];Science in China,Ser.A;2005年11期

7 ;Equivariant Lagrangian Minimal S~3 in CP~3[J];Acta Mathematica Sinica(English Series);2006年04期

8 Robert L. BRYANT;;SO(n)-Invariant Special Lagrangian Submanifolds of C~(n+1) with Fixed Loci[J];Chinese Annals of Mathematics;2006年01期

9 ;New construction of special Lagrangian submanifolds in T~*R~n equipped with the standard metric[J];Applied Mathematics:A Journal of Chinese Universities(Series B);2008年01期

10 陳柏輝,,李安民;Floer Cohomology of Lagrangian Intersection:I~*(T~n, RP~n: CP~n)[J];數(shù)學(xué)進(jìn)展;1996年04期

相關(guān)會(huì)議論文 前4條

1 羅和治;;Convergence to Global Solutions of Augmented Lagrangian Methods for Constrained Nonconvex Optimization[A];2006年中國(guó)運(yùn)籌學(xué)會(huì)數(shù)學(xué)規(guī)劃分會(huì)代表會(huì)議暨第六屆學(xué)術(shù)會(huì)議論文集[C];2006年

2 ;非線性有限元 第4章 Lagrangian網(wǎng)絡(luò)[A];第八屆全國(guó)非線性有限元高級(jí)講習(xí)班講義[C];2012年

3 黃永偉;李澤民;;集值映射向量最優(yōu)化的標(biāo)量化、Lagrangian乘子與弱鞍點(diǎn)[A];中國(guó)運(yùn)籌學(xué)會(huì)第六屆學(xué)術(shù)交流會(huì)論文集(上卷)[C];2000年

4 郭勝利;尚有林;濮定國(guó);;一種新的帶F-B非線性互補(bǔ)函數(shù)的Lagrangian乘子方法[A];第九屆中國(guó)不確定系統(tǒng)年會(huì)、第五屆中國(guó)智能計(jì)算大會(huì)、第十三屆中國(guó)青年信息與管理學(xué)者大會(huì)論文集[C];2011年

相關(guān)博士學(xué)位論文 前2條

1 羅和治;約束全局最優(yōu)化增廣Lagrangian方法及凸化方法研究[D];上海大學(xué);2007年

2 胡瀟U

本文編號(hào):2483854


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2483854.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶099c5***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com