算子函數(shù)演算的Wey1定理
發(fā)布時(shí)間:2019-04-02 15:54
【摘要】:設(shè)H為復(fù)的無(wú)限維可分的Hilbert空間,B(H)為H上的有界線性算子的全體。若σ(T)\σ_w(T)=π00(T),則稱T∈B(H)滿足Weyl定理,其中σ(T)和σ_w(T)分別表示算子T的譜和Weyl譜,π00(T)表示譜集中孤立的有限重特征值的全體。首先給出了Hilbert空間上有界線性算子WeylKato分解的定義,并由Weyl-Kato分解的性質(zhì)定義了一種新的譜集,利用該譜集刻畫了算子函數(shù)演算滿足Weyl定理的充要條件。
[Abstract]:Let H be a complex infinite dimensional separable Hilbert space, B (H) be the whole of bounded linear operators on H. If 蟽 (T)\ 蟽 _ w (T) = 蟺 00 (T), then it is said that T? B (H) satisfies Weyl theorem, where 蟽 (T) and 蟽 _ w (T) denote the spectrum of operator T and the Weyl spectrum, respectively. 蟺 00 (T) denotes the whole of isolated finite eigenvalues in spectral sets. Firstly, the definition of WeylKato decomposition of bounded linear operators on Hilbert spaces is given, and a new spectral set is defined by the properties of Weyl-Kato decomposition. The necessary and sufficient conditions for operator function calculus to satisfy Weyl theorem are characterized by this spectral set.
【作者單位】: 陜西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(11371012,11471200,11571213) 中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(GK201601004)
【分類號(hào)】:O177
本文編號(hào):2452689
[Abstract]:Let H be a complex infinite dimensional separable Hilbert space, B (H) be the whole of bounded linear operators on H. If 蟽 (T)\ 蟽 _ w (T) = 蟺 00 (T), then it is said that T? B (H) satisfies Weyl theorem, where 蟽 (T) and 蟽 _ w (T) denote the spectrum of operator T and the Weyl spectrum, respectively. 蟺 00 (T) denotes the whole of isolated finite eigenvalues in spectral sets. Firstly, the definition of WeylKato decomposition of bounded linear operators on Hilbert spaces is given, and a new spectral set is defined by the properties of Weyl-Kato decomposition. The necessary and sufficient conditions for operator function calculus to satisfy Weyl theorem are characterized by this spectral set.
【作者單位】: 陜西師范大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(11371012,11471200,11571213) 中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金(GK201601004)
【分類號(hào)】:O177
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 路干亭;;關(guān)于Wey1定理[J];陜西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1982年00期
相關(guān)博士學(xué)位論文 前1條
1 戴磊;Wey1型定理的判定及其穩(wěn)定性[D];陜西師范大學(xué);2013年
相關(guān)碩士學(xué)位論文 前1條
1 李娜娜;算子與其共軛的Wey1型定理的等價(jià)性判定[D];陜西師范大學(xué);2012年
,本文編號(hào):2452689
本文鏈接:http://sikaile.net/kejilunwen/yysx/2452689.html
最近更新
教材專著