隨機濾波方程數(shù)值解法及顯微目標跟蹤研究
[Abstract]:In multi-target tracking, the random filtering equation can be used to build a model to solve the problem that multi-target state and observation information are disturbed by noise and clutter. The stochastic filtering equation not only plays a very important role in the field of multi-target tracking, but also is closely related to the practical problems in the fields of physics, economics, biodynamics, stochastic control and so on. Therefore, the stochastic filtering equation has important theoretical and practical significance. In this paper, we mainly study two aspects of stochastic filtering equation: the numerical solution of the state process of the continuous-time stochastic filtering equation, and the application of discrete stochastic filtering equation in the tracking of microscopic targets. For the semilinear stochastic filtering equation of state, the exponential Euler method is used to solve it. It is proved that the convergence order of this method is 0.5 when solving the semilinear equation. At the same time, the stochastic analysis theory is used. The asymptotic mean square stability and the mean square stability region of the numerical scheme are studied. Compared with the existing Euler-Maruyama method, the exponential Euler method has better mean square stability. For the stochastic partial differential filtering equation with continuous time, the noise driven by multiplicative Q-Wiener process is considered. The space is discretized by the Galerkin method, and the time is discrete by the random exponential integral method. Moreover, the number of truncation of noise is different from that of Galerkin, and the Lp convergence of the solution is obtained. The numerical method in this paper can use fewer random variables to approximate the noise, which is more efficient than the implicit Euler method. For the target tracking problem of microscopic video sequence, the state evolution equation and measurement equation of microscopic target are established by discrete time stochastic filtering theory, and the state process of microscopic target is estimated by particle probability hypothesis density filtering method. The probability density distribution of the solution state of the filter equation is obtained and an automatic tracking framework is established. In order to improve the accuracy of state estimation of stochastic filtering equation, the microscopic target is modeled by ellipse shape, and the likelihood function model based on deformation matrix is constructed to improve the accuracy of the state estimation of stochastic filtering equation in order to solve the problem of loss of information of shape feature caused by point target. The probability hypothetical density of the estimated target is decomposed in the particle weight space according to the measurement information in the formation part of the state association trajectory of the microscopic target, and a two-level decomposed state association algorithm based on probability hypothesis density rate filtering is constructed. Based on the estimation of the probability density correlation intensity of the target at the adjacent time, the state estimation of the microscopic target is correlated, and the dynamic trajectory of the microscopic target is obtained. A position and azimuth constraint model is proposed to optimize the state association algorithm for the complex scene when the trajectory of micro-objects is crossed.
【學位授予單位】:哈爾濱工業(yè)大學
【學位級別】:博士
【學位授予年份】:2015
【分類號】:O241.8
【相似文獻】
相關期刊論文 前1條
1 蘇艷蘋;王戰(zhàn)偉;;極坐標系下的目標運動模型研究[J];河南科學;2012年02期
相關會議論文 前2條
1 楚威;閻星娥;蘇春梅;;仿真系統(tǒng)中飛機目標典型運動模型的研究與實現(xiàn)[A];Proceedings of 14th Chinese Conference on System Simulation Technology & Application(CCSSTA’2012)[C];2012年
2 張曉勇;羅來源;;被動測向聲納目標最近時刻估計[A];第六屆全國信號和智能信息處理與應用學術會議論文集[C];2012年
相關博士學位論文 前10條
1 馮肖雪;復雜環(huán)境下多傳感器目標跟蹤關鍵技術研究[D];西北工業(yè)大學;2015年
2 江同洋;基于隨機有限集的多目標貝葉斯濾波方法研究[D];浙江大學;2015年
3 史春妹;隨機濾波方程數(shù)值解法及顯微目標跟蹤研究[D];哈爾濱工業(yè)大學;2015年
4 趙海楠;視覺目標跟蹤中表觀建模方法研究[D];哈爾濱工業(yè)大學;2016年
5 張國亮;紅外多光譜多個弱小運動目標的檢測與跟蹤技術研究[D];哈爾濱工業(yè)大學;2016年
6 顧菘;視頻目標的跟蹤與分割的理論和方法研究[D];電子科技大學;2016年
7 鐘金琴;基于視覺的目標跟蹤關鍵技術研究[D];合肥工業(yè)大學;2014年
8 趙玲玲;目標跟蹤中的粒子濾波與概率假設密度濾波研究[D];哈爾濱工業(yè)大學;2011年
9 羅飛騰;目標跟蹤的粒子濾波技術研究[D];中國科學技術大學;2010年
10 王勇;基于統(tǒng)計方法的運動目標檢測與跟蹤技術研究[D];華中科技大學;2009年
相關碩士學位論文 前10條
1 章聰;空中虛擬靶標技術的研究[D];南京理工大學;2015年
2 侯勝彬;基于OpenCV的運動目標檢測跟蹤的研究[D];電子科技大學;2014年
3 伍俊橙;多目標粒子濾波算法研究[D];電子科技大學;2014年
4 廖良雄;基于隨機有限集的弱小目標TBD方法研究[D];西安電子科技大學;2014年
5 段羽浩;基于SE-WORKBENCH的飛機目標雷達信號仿真[D];華中科技大學;2014年
6 陳大龍;基于DSP的目標檢測與跟蹤系統(tǒng)的研究與設計[D];燕山大學;2016年
7 張儒元;基于PTZ鏡頭的主動目標跟蹤[D];西安電子科技大學;2009年
8 范晶晶;分布式多視角目標跟蹤的統(tǒng)計推理方法及實現(xiàn)[D];復旦大學;2011年
9 胡鵬;Kalman濾波在視頻目標跟蹤中的應用研究[D];重慶大學;2010年
10 張虎;MeanShift粒子濾波算法在視頻目標跟蹤中的應用研究[D];廣西科技大學;2013年
,本文編號:2451211
本文鏈接:http://sikaile.net/kejilunwen/yysx/2451211.html