天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

無(wú)界域上一類(lèi)波動(dòng)方程的拉回吸引子

發(fā)布時(shí)間:2019-02-16 19:30
【摘要】:拉回吸引子是描述系統(tǒng)解的長(zhǎng)時(shí)間漸近行為的緊集,是研究無(wú)窮維動(dòng)力系統(tǒng)的重要工具.本文考慮無(wú)界區(qū)域上一類(lèi)波動(dòng)方程的拉回吸引子,獲得了無(wú)界區(qū)域上非自治Brinkman-Forchheimer方程和非自治Sine-Gordon方程拉回吸引子的存在性.全文共分為五章.第一章,介紹了無(wú)窮維動(dòng)力系統(tǒng)的背景,分自治和非自治兩種情形闡述了全局吸引子、一致吸引子和拉回吸引子的研究進(jìn)展情況,還介紹了本文的主要工作和思想.第二章,介紹了所要研究問(wèn)題的預(yù)備知識(shí),給出了文章需要用到的一些相關(guān)符號(hào)、不等式、定理以及相關(guān)理論,為接下來(lái)的討論做準(zhǔn)備.第三章,研究了無(wú)界區(qū)域L~2(Ω)上非自治Brinkman-Forchheimer方程拉回吸引子的存在性,針對(duì)無(wú)界區(qū)域上Sobolev嵌入不再是緊的,利用一致估計(jì)和截?cái)嗪瘮?shù)技巧證明了無(wú)界域上拉回吸引子的存在性,將無(wú)界區(qū)域分成兩部分,有界部分和無(wú)界部分,有界部分用Sobolev緊嵌入,無(wú)界部分則證明指數(shù)一致衰減到零,從而得到緊性.第四章,研究了無(wú)界區(qū)域H~1(R~n)×L~2(R~n)上非自治Sine-Gordon方程拉回吸引子的存在性,同樣的,此時(shí)Sobolev緊嵌入不再成立,先對(duì)方程的解進(jìn)行先驗(yàn)估計(jì),通過(guò)解的一致估計(jì)證明了方程拉回吸收集的存在性,而后構(gòu)造能量方程證明了解的拉回漸近緊性,從而得到Sine-Gordon方程在無(wú)界域上拉回吸引子的存在性.第五章,對(duì)本文的總結(jié)及對(duì)拉回吸引子研究前景的展望。
[Abstract]:The pull back attractor is a compact set which describes the long time asymptotic behavior of the solution of the system and is an important tool for the study of infinite dimensional dynamical systems. In this paper, we consider the pullback attractors of a class of wave equations in unbounded regions, and obtain the existence of pullback attractors for nonautonomous Brinkman-Forchheimer equations and nonautonomous Sine-Gordon equations in unbounded regions. The full text is divided into five chapters. In chapter 1, the background of infinite dimensional dynamical system is introduced. The research progress of global attractor, uniform attractor and pull back attractor is described in two cases of autonomy and nonautonomy. The main work and ideas of this paper are also introduced. In the second chapter, we introduce the preparatory knowledge of the problem, and give some relevant symbols, inequalities, theorems and relevant theories to be used in this paper, so as to prepare for the following discussion. In chapter 3, we study the existence of pullback attractors for the nonautonomous Brinkman-Forchheimer equations on the unbounded domain Ln 2 (惟). For the unbounded region, Sobolev embedding is no longer compact. By using uniform estimation and truncation function technique, the existence of pull back attractor on unbounded domain is proved. The unbounded region is divided into two parts, bounded part and unbounded part, bounded part is Sobolev compactly embedded, and unbounded part is proved that exponentially uniformly attenuates to zero. Thus the compactness is obtained. In chapter 4, we study the existence of the pull back attractor of the nonautonomous Sine-Gordon equation on the unbounded domain H1 (rn) 脳 Ln (rn). Similarly, the Sobolev compactness embedding is no longer true at this time, a priori estimate of the solution of the equation is made. The existence of the pull-back absorption set of the equation is proved by the uniform estimation of the solution, and the tension asymptotically compactness of the solution is proved by constructing the energy equation, and the existence of the trace-back attractor of the Sine-Gordon equation in the unbounded domain is obtained. The fifth chapter, the summary of this paper and the prospect of pull-back attractor research.
【學(xué)位授予單位】:廣州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O175

【參考文獻(xiàn)】

相關(guān)期刊論文 前3條

1 雍鴻雄;馬巧珍;常亞亞;;非自治吊橋方程的拉回吸引子(英文)[J];四川大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年02期

2 Xueli SONG;;Pullback D-Attractors for A Non-Autonomous Brinkman-Forchheimer System[J];數(shù)學(xué)研究及應(yīng)用;2013年01期

3 PARK Jong Yeoul;PARK Sun Hye;;Pullback attractors for the non-autonomous Benjamin-Bona-Mahony equation in unbounded domains[J];Science China(Mathematics);2011年04期



本文編號(hào):2424766

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2424766.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶c524f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
一级片二级片欧美日韩| 在线免费国产一区二区| 亚洲a级一区二区不卡| 国产一区二区在线免费| 观看日韩精品在线视频| 日韩美女偷拍视频久久| 微拍一区二区三区福利| 国内外激情免费在线视频| 国产又粗又猛又长又黄视频| 国产精品一区二区有码| 免费人妻精品一区二区三区久久久| 日韩国产传媒在线精品| 亚洲欧美日韩另类第一页| 日韩精品亚洲精品国产精品| 91偷拍与自偷拍精品| 亚洲最新中文字幕一区| 日韩人妻少妇一区二区| 日本高清一道一二三区四五区| 日本在线不卡高清欧美| 丰满人妻少妇精品一区二区三区 | 久久婷婷综合色拍亚洲| 日本午夜免费观看视频| 91欧美日韩国产在线观看| 欧美日韩综合综合久久久| 黄色美女日本的美女日人| 国产免费无遮挡精品视频 | 天堂av一区一区一区| 国产日韩综合一区在线观看| 亚洲一区精品二人人爽久久| 黄片美女在线免费观看| 国产一区欧美一区日韩一区| 日韩精品一区二区三区四区 | 日韩精品一级一区二区| 99久久无色码中文字幕免费| 丰满少妇被猛烈撞击在线视频| 亚洲午夜精品视频观看| 免费特黄一级一区二区三区| 99热九九在线中文字幕| 综合久综合久综合久久| 国产91麻豆精品成人区| 久久三级国外久久久三级|