等離子體中JEC-FDTD方法的數(shù)值色散特性和穩(wěn)定性分析
[Abstract]:Finite difference time domain (Finite-Difference Time-Domain Method,FDTD) method is an important method to deal with electromagnetic wave propagation in plasma. The numerical dispersion error and stability are unavoidable problems. In recent years, with the development of FDTD calculation method, FDTD (JE Convolution FDTD, JEC-FDTD (current density convolution) method has been widely used in plasma research. However, only the numerical dispersion of one-dimensional JEC-FDTD method in unmagnetized plasma has been analyzed in literature. On this basis, the numerical dispersion and stability of the JEC-FDTD method in plasma are studied. The main contents are as follows: firstly, the basic theory of JEC-FDTD method is introduced, including the traditional FDTD algorithm and Courant stability condition, the iterative equation of JEC-FDTD method and the related theory of perfectly matched layer, and the simulation of the algorithm is implemented. Secondly, starting with the numerical dispersion analysis of the one-dimensional unmagnetized plasma JEC-FDTD method, the numerical dispersion characteristics of the algorithm in two and three dimensions are deeply studied, and the one-dimensional unmagnetized plasma JEC-FDTD method is taken as an example. Its stability under different plasma collision frequency and different plasma angular frequency is analyzed. Finally, the numerical dispersion and stability of the JEC-FDTD method in one-dimensional magnetized plasma are studied, and the influence of the parameters of the magnetized plasma on the numerical dispersion and stability is analyzed. By analyzing the numerical dispersion characteristics and stability of JEC-FDTD method in unmagnetized plasma and magnetized plasma, the range of plasma parameters and the numerical dispersion error can be obtained when the stability of the algorithm is guaranteed. The results are of great significance for the application of JEC-FDTD method in plasma. In addition, the idea of this paper can be extended to the FDTD method in other dispersive media.
【學(xué)位授予單位】:西安理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O53;O241.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 徐利軍,袁乃昌;高階ADI-FDTD算法的數(shù)值色散分析[J];電子與信息學(xué)報(bào);2005年10期
2 李康,孔凡敏,郭毅峰,王俊泉,梅良模;MRTD和高階FDTD算法的數(shù)值色散特性的分析[J];系統(tǒng)仿真學(xué)報(bào);2005年09期
3 夏冬,黨濤,鄭宏興;一維ADI-FDTD方法的數(shù)值色散分析[J];中國(guó)民航學(xué)院學(xué)報(bào);2005年02期
4 黨濤,魯旭虎,鄭宏興;二維US-FDTD方法的數(shù)值穩(wěn)定和色散分析[J];中國(guó)民航學(xué)院學(xué)報(bào);2004年06期
5 黨濤,鄭宏興;關(guān)于三維ADI-FDTD方法的數(shù)值色散分析[J];中國(guó)民航學(xué)院學(xué)報(bào);2004年03期
6 黨濤,鄭宏興;關(guān)于二維ADI-FDTD方法的數(shù)值色散分析[J];中國(guó)民航學(xué)院學(xué)報(bào);2004年02期
7 劉少斌,莫錦軍,袁乃昌;各向異性磁化等離子體JEC-FDTD算法[J];物理學(xué)報(bào);2004年03期
8 周曉軍,喻志遠(yuǎn),林為干;保角變換FDTD算法的數(shù)值穩(wěn)定性與數(shù)值色散[J];電子科學(xué)學(xué)刊;2000年04期
相關(guān)會(huì)議論文 前1條
1 劉少斌;袁乃昌;;二維等離子體PLJERC-FDTD算法的數(shù)值色散誤差和耗散誤差分析[A];2003'全國(guó)微波毫米波會(huì)議論文集[C];2003年
相關(guān)博士學(xué)位論文 前1條
1 劉崧;等離子體時(shí)域有限差分算法及其應(yīng)用研究[D];南京航空航天大學(xué);2010年
,本文編號(hào):2417009
本文鏈接:http://sikaile.net/kejilunwen/yysx/2417009.html