生物動(dòng)力系統(tǒng)的穩(wěn)定性和分岔分析
[Abstract]:Dynamic systems are an important part of nonlinear disciplines. Nonlinear problems exist in many disciplines and fields of life, such as mathematics, physics, biology, medicine, engineering. Mechanics and economics can be explained by nonlinear dynamic systems. In particular, biological mathematics as an interdisciplinary subject of biology and mathematics, has been rapid development in recent years. In order to establish a practical mathematical model, many factors need to be considered, such as time, space, time delay, randomness, pulse, stage and so on. In this paper, the dynamic behaviors of discrete infectious disease model, prey predator model with time delay and stochastic discrete predator model are studied. The main contents are as follows: 1. This paper first describes the development, purpose and significance of biodynamic system at home and abroad, then briefly describes some basic definitions and theorems that need to be used in this paper, and finally introduces the work done in this paper. 2. The dynamic behavior of a class of discrete infectious disease model (SI) systems is analyzed. Firstly, according to the characteristic root of the characteristic equation, the stability condition of the fixed point is obtained. Secondly, according to the central popular theorem and the bifurcation theory, the condition of the double periodic bifurcation and the Neimark-Sacker bifurcation of the system at the fixed point is obtained. Finally, the numerical simulation verifies the correctness of the conclusion. 3. The dynamic behavior of predator-prey model with two delays is analyzed. Firstly, the existence of Hopf bifurcation of the system at the equilibrium point is judged according to the distribution of the characteristic root, secondly, the direction of the Hopf bifurcation and the periodic solution of the system are analyzed by using the normative theory of functional differential equation and the central popular theorem. Finally, numerical simulation verifies the correctness of the theory. 4. The asymptotic stability and Hopf bifurcation of discrete systems with stochastic lag predator-prey model are analyzed. Firstly, the stochastic discrete system is transformed into a deterministic system by orthogonal polynomial approximation. Secondly, according to the Hopf bifurcation theory, the critical value of Hopf bifurcation for the stochastic system is obtained and the central popular theorem is analyzed. Finally, the numerical simulation shows the correctness.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O19
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 趙愛民;李文娟;;一類離散SIRS傳染病模型的持久性[J];山西大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年01期
2 王穎;滕志東;;一類離散SIRS傳染病模型的Lyapunov函數(shù)[J];新疆大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年03期
3 宋燕;張宇;劉薇;;一類具有標(biāo)準(zhǔn)發(fā)生率SIR模型的穩(wěn)定性分析及控制[J];渤海大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年02期
4 李浩;滕志東;王蕾;;具有時(shí)滯和非線性發(fā)生率的離散SIRS傳染病模型的持久性[J];北華大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年03期
5 吳亭;;一類SIR傳染病離散模型的持久性與穩(wěn)定性[J];科技通報(bào);2011年06期
6 田曉紅;徐瑞;;一類具時(shí)滯和階段結(jié)構(gòu)的捕食模型的穩(wěn)定性與Hopf分支[J];高校應(yīng)用數(shù)學(xué)學(xué)報(bào)A輯;2010年03期
7 ;HOPF BIFURCATION ANALYSIS IN A 4D-HYPERCHAOTIC SYSTEM[J];Journal of Systems Science & Complexity;2010年04期
8 周玲麗;孫光輝;李愛芹;;具有潛伏期的離散SEIR模型的穩(wěn)定性[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2010年07期
9 孟新柱;陳蘭蓀;宋治濤;;一類新的含有垂直傳染與脈沖免疫的時(shí)滯SEIR傳染病模型的全局動(dòng)力學(xué)行為[J];應(yīng)用數(shù)學(xué)和力學(xué);2007年09期
10 王洪坡;李杰;張錕;;速度時(shí)滯反饋控制下磁浮系統(tǒng)的穩(wěn)定性與Hopf分岔(英文)[J];自動(dòng)化學(xué)報(bào);2007年08期
相關(guān)博士學(xué)位論文 前1條
1 袁利國;基于Logistic模型的幾類系統(tǒng)的動(dòng)力學(xué)研究及其參數(shù)估計(jì)[D];華南理工大學(xué);2012年
相關(guān)碩士學(xué)位論文 前4條
1 鄧田;一類生物動(dòng)力系統(tǒng)的穩(wěn)定性與Hopf分岔研究[D];蘭州交通大學(xué);2016年
2 董端;一類隨機(jī)參數(shù)離散系統(tǒng)的動(dòng)力學(xué)行為與同步研究[D];北方民族大學(xué);2014年
3 周敏;兩類離散生物數(shù)學(xué)模型的穩(wěn)定性與分岔分析[D];中南大學(xué);2012年
4 姜曉偉;兩類非線性離散動(dòng)力系統(tǒng)的穩(wěn)定性與分岔分析[D];中南大學(xué);2008年
,本文編號(hào):2412390
本文鏈接:http://sikaile.net/kejilunwen/yysx/2412390.html