Tricomi方程極點(diǎn)在橢圓區(qū)域的基本解
[Abstract]:The second order differential equation Tu=yu_ (xx) u _ (yy) = 0 for the independent variable xy is called Tricomi equation. It is a classical example of mixed partial differential equation, and T is called Tricomi operator. The equation is elliptic on the upper half plane y > 0, parabolic on the x axis y 0 and hyperbolic on the lower half plane y < 0. Hybrid equations are important partial differential equations, which are widely used in mathematics, physics and gas dynamics [1-50]. For example, smooth steady transonic flow satisfies a mixed equation. But for the uniform elliptic equation and the uniform hyperbolic equation, the mixed equation needs to be further studied. The Tricomi operator is invariant under the (3 ~ 2) -scale transformation. According to the usual practice of physicists, the Tricomi operator has a homogeneous solution corresponding to this scale transformation. Barros-Neto and Gelfand [6] obtain the fundamental solutions F and F of the Tricomi operator poles on the degenerate line by using the characteristic method and the homogeneity of the Tricomi operator. In the first chapter, the background knowledge and the main ideas of the proof are introduced. Barros-Neto and Gelfand [7] also obtain the basic solutions of the Tricomi operator poles in the elliptic region by using the characteristic method. The second chapter introduces the main methods of its proof. In particular, when the poles tend to degenerate, the limit of the fundamental solution is a linear combination of (10) F and -F. The sum of real part coefficients is 1, and the sum of imaginary part coefficients counteracts, so the limit is still the basic solution of Tricomi operator T. In the third chapter, we use the series expansion method of Barros-Neto and Cardoso [3] to obtain the basic solution of the pole of Tricomi operator in the new form of elliptic domain, when the pole tends to degenerate. The limit behavior of the basic solution is different from that obtained by Barros-Neto and Gelfand [7]: the limit of the fundamental solution is also a linear combination of F and F-, but the sum of the real part coefficient is not 1, the sum of the imaginary part coefficient is not offset. So the limit is no longer the basic solution of Tricomi operator T. The work in this paper will be helpful for the further study of the boundary value problem and Cauchy problem of the mixed equation in the future.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2016
【分類號】:O175.28
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳莉娜;蔣泉;;基本解方法中多對稱問題基本解函數(shù)的重構(gòu)及應(yīng)用[J];南通大學(xué)學(xué)報(自然科學(xué)版);2013年02期
2 丁華建;魏海娥;吳莉娜;蔣泉;周志東;;對稱域基本解函數(shù)的構(gòu)造及應(yīng)用[J];南通大學(xué)學(xué)報(自然科學(xué)版);2011年04期
3 王寬小;;方程X~2+Y~2=Z~2基本解的表示[J];陰山學(xué)刊(自然科學(xué));2010年02期
4 黃鳳輝;;時間空間分?jǐn)?shù)階對流-彌散方程的基本解[J];內(nèi)蒙古師范大學(xué)學(xué)報(自然科學(xué)漢文版);2009年04期
5 莊宏,嚴(yán)宗毅,吳望一;三維斯托克斯流動在扁球坐標(biāo)系中的基本解及其應(yīng)用[J];應(yīng)用數(shù)學(xué)和力學(xué);2002年05期
6 屈愛芳;;Tricomi算子的基本解[J];數(shù)學(xué)學(xué)報;2008年04期
7 朱繼梅,相小寧;Tchebychev近似基本解的邊界元法在結(jié)構(gòu)邊界條件識別中的應(yīng)用[J];上海機(jī)械學(xué)院學(xué)報;1992年03期
8 王金玉;孫方裕;;基于測地距離的基本解方法求解非齊次各向異性IHCP問題[J];浙江大學(xué)學(xué)報(理學(xué)版);2009年01期
9 唐耀宗;;基本解方法在美式看跌期權(quán)定價中的應(yīng)用[J];重慶工商大學(xué)學(xué)報(自然科學(xué)版);2009年05期
10 張勁,王宇,王秀喜,張士誠;半無限大層狀均勻各向同性介質(zhì)的基本解[J];中國科學(xué)技術(shù)大學(xué)學(xué)報;2001年02期
相關(guān)博士學(xué)位論文 前2條
1 楊震;薄膜涂層內(nèi)部受集中力的基本解及其應(yīng)用[D];上海交通大學(xué);2010年
2 甘信軍;伊藤擴(kuò)散中的弱對偶以及基本解的蒙特卡羅模擬[D];山東大學(xué);2012年
相關(guān)碩士學(xué)位論文 前6條
1 王濤;一維和二維六方準(zhǔn)晶的一些基本解[D];西南交通大學(xué);2015年
2 費(fèi)美琴;Tricomi方程極點(diǎn)在橢圓區(qū)域的基本解[D];江蘇大學(xué);2016年
3 徐州;識別熱方程移動邊界的一種基本解方法[D];蘭州大學(xué);2012年
4 王俊超;利用基本解方法反演熱源和初始溫度[D];蘭州大學(xué);2013年
5 胡勇;熱方程未知源識別的計(jì)算方法[D];蘭州大學(xué);2013年
6 劉遠(yuǎn);對于熱方程基本解的上界估計(jì)[D];中國科學(xué)技術(shù)大學(xué);2014年
,本文編號:2392734
本文鏈接:http://sikaile.net/kejilunwen/yysx/2392734.html