基于退化建模的剩余壽命預(yù)測(cè)
[Abstract]:In practical engineering applications, the system or equipment may occur a variety of failures, the need for situational maintenance (Condition Based Maintenance,CBM). Residual life prediction (Remaining Life,RL) is one of the core problems in the process of situational maintenance. On the other hand, in the process of recycling and remanufacturing of waste products, the residual life prediction can be used to determine whether the recovered parts are worth remanufacturing or not, and it is also necessary to predict the residual life of the remanufactured parts to determine their value. Therefore, the residual life prediction of equipment or system has great significance and practical value. Firstly, this paper summarizes two methods for predicting the residual life of system or equipment: the model method based on the damage mechanism of system or equipment and the statistical analysis method based on data. In view of the modeling process of data processing, the Wiener process is introduced. Markov chain, Poisson process method; Then the corresponding parameter estimation methods are summarized: maximum likelihood estimation (MLE), expectation maximization algorithm (EM) and Bayesian method (Bayesian method). Secondly, three models are established for the impact of impact load on the degradation system: static impact degradation model, cumulative impact degradation model and extreme impact degradation model. The probability density function of residual life of these three models is derived. The numerical results show that the prediction accuracy of residual life is improved by considering the impact load. Then, for the degraded system with working state and storage state, the unknown parameters in the model are estimated by maximum likelihood estimation and EM algorithm, and the residual life is predicted by Monte Carlo method, and the residual life distribution function is deduced. Finally, the validity of the proposed method is verified by comparing and analyzing the relevant data. Finally, the methods proposed in this paper are summarized and prospected. Due to the lack of corresponding empirical experiments, it is difficult to obtain enough relevant data and quantitative information. Therefore, the practical application results of the two methods proposed in this paper need to be further verified. In addition, it is too harsh to use continuous time Markov chain to approximate describe the working state and storage state of the system, which needs further research and development.
【學(xué)位授予單位】:西安電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:O213.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 Hu Changhua;Zhou Zhijie;Zhang Jianxun;Si Xiaosheng;;A survey on life prediction of equipment[J];Chinese Journal of Aeronautics;2015年01期
2 康樂(lè);李建蘭;嚴(yán)野;劉念;;考慮沖擊載荷影響的性能退化型產(chǎn)品可靠性研究[J];中國(guó)機(jī)械工程;2014年05期
3 司小勝;胡昌華;周東華;;帶測(cè)量誤差的非線性退化過(guò)程建模與剩余壽命估計(jì)[J];自動(dòng)化學(xué)報(bào);2013年05期
4 蔡景;任淑紅;陸曉華;;基于帶漂移布朗運(yùn)動(dòng)的滾輪滑軌可靠性預(yù)測(cè)方法研究[J];中國(guó)機(jī)械工程;2012年12期
5 周秀峰;姚軍;張俊;;電子整機(jī)加速貯存試驗(yàn)的Dirichlet分析方法[J];航空學(xué)報(bào);2012年07期
6 鐘強(qiáng)暉;張志華;梁勝杰;;基于多元退化數(shù)據(jù)的可靠性分析方法[J];系統(tǒng)工程理論與實(shí)踐;2011年03期
7 陳亮;胡昌華;;基于退化建模的可靠性分析研究現(xiàn)狀[J];控制與決策;2009年09期
8 王愛(ài)平;張功營(yíng);劉方;;EM算法研究與應(yīng)用[J];計(jì)算機(jī)技術(shù)與發(fā)展;2009年09期
9 茹正亮;高安力;;EM算法在不完全數(shù)據(jù)參數(shù)估計(jì)中的應(yīng)用[J];南京工程學(xué)院學(xué)報(bào)(自然科學(xué)版);2008年04期
10 岳佳;王士同;;高斯混合模型聚類(lèi)中EM算法及初始化的研究[J];微計(jì)算機(jī)信息;2006年33期
,本文編號(hào):2381872
本文鏈接:http://sikaile.net/kejilunwen/yysx/2381872.html