脈沖微分方程解的存在性和多重性
發(fā)布時(shí)間:2018-11-20 07:49
【摘要】:非線(xiàn)性泛函分析作為現(xiàn)代數(shù)學(xué)的一個(gè)重要分支,因其能很好的解釋自然界中各種各樣的自然現(xiàn)象受到了越來(lái)越多的數(shù)學(xué)工作者的廣泛關(guān)注,并在物理學(xué),應(yīng)用數(shù)學(xué),航天,生物等領(lǐng)域有著廣泛而重要的應(yīng)用.本文共分為三章,第一章我們研究了脈沖三點(diǎn)邊值問(wèn)題其中△u|t=tk=(tk+)- u(tk-),△u'|t=tk=u'(tk-),k= 1,2,3,...,0 = t0t1t2… 1,當(dāng)i→∞ 時(shí),ti→1.0 α 1, 0 tk η 1,k =1,2,3,...,m.本章結(jié)合了[1]的脈沖項(xiàng)和[2]的邊值條件來(lái)研究方程(1.1.1).相較于文獻(xiàn)[1][2],我們將有限個(gè)脈沖點(diǎn)推廣至無(wú)窮個(gè)脈沖點(diǎn),且代替其錐拉伸壓縮和不動(dòng)點(diǎn)指數(shù)的方法,運(yùn)用Lerray- Schauder二則一定理和不動(dòng)點(diǎn)指數(shù)的方法得到解的存在性;將[3]的一般微分方程加上脈沖項(xiàng)來(lái)研究帶有脈沖項(xiàng)的微分方程.另外,考慮文獻(xiàn)[4][5]的方程都是研究正解的存在性,而本章方程不僅得到正解的存在性,還得到變號(hào)解的存在性.第二章我們研究了半無(wú)窮區(qū)間上脈沖分?jǐn)?shù)階微分方程多點(diǎn)邊值問(wèn)題其中 A 0 是參數(shù),g ∈ (0,1), 0 = s0 l1 ≤ S1 τ1 ≤t2 ... li≤ …,當(dāng)i→∞時(shí),ti → ∞. f:R_×R×R×R→R 連續(xù)且gi:[ti.Si]× R → R, i=1,2,3,...,cDsi,tq表示一般的q階Caputo導(dǎo)數(shù).本章在文[6]的基礎(chǔ)上,將其有限區(qū)間換成無(wú)限區(qū)間并研究了無(wú)窮個(gè)脈沖點(diǎn)的情況;將文[7]的方程增加了關(guān)于u(si)的條件,其中0 =s0t1≤s1≤t2…ti≤…;將[8]的方程從整數(shù)階推廣至分?jǐn)?shù)階且增加了關(guān)于u(si)的條件.另外[9][10][11][12]考慮有限區(qū)間脈沖分?jǐn)?shù)階微分方程邊值問(wèn)題,而本章考慮無(wú)窮區(qū)間脈沖分?jǐn)?shù)階微分方程邊值問(wèn)題,利用Banach壓縮映射得到方程唯一解.第三章我們研究了分?jǐn)?shù)階微分方程的非局部邊值問(wèn)題其中α ∈ (2,3], β 0, 0 η ξ 1, k O 是參數(shù),a 是常數(shù).f:[0,1]×R→R連續(xù),cDα表示α階Caputo導(dǎo)數(shù).本章在文[13]的基礎(chǔ)上,將α - 1階導(dǎo)數(shù)提高一階;相較于文獻(xiàn)[14],方程(3.1.1)把α - 1階導(dǎo)數(shù)提高一階且利用banach壓縮映射得到方程唯一解;相較于文獻(xiàn)[15],將局部邊值條件推廣為非局部邊值條件,即u(ξ)= a∫0η(η-s)β-1/Γ(β)u(s)ds積分邊值條件更加廣泛,而且把Riemann - Liouville型導(dǎo)數(shù)改為研究Caputo型導(dǎo)數(shù).
[Abstract]:As an important branch of modern mathematics, nonlinear functional analysis has been paid more and more attention by more and more mathematics workers for its ability to explain various natural phenomena in nature. Biology and other fields have a wide range of important applications. This paper is divided into three chapters. In the first chapter, we study the three-point boundary value problem of impulses, where u ttnk = (tk)-u (tk-), u't tk'u'(tk-), k = 1 1 ~ 2 ~ 2 ~ 3 ~ 3 ~ 3 ~ 0 = t0t1t2. 1, when I ~ 鈭,
本文編號(hào):2344305
[Abstract]:As an important branch of modern mathematics, nonlinear functional analysis has been paid more and more attention by more and more mathematics workers for its ability to explain various natural phenomena in nature. Biology and other fields have a wide range of important applications. This paper is divided into three chapters. In the first chapter, we study the three-point boundary value problem of impulses, where u ttnk = (tk)-u (tk-), u't tk'u'(tk-), k = 1 1 ~ 2 ~ 2 ~ 3 ~ 3 ~ 3 ~ 0 = t0t1t2. 1, when I ~ 鈭,
本文編號(hào):2344305
本文鏈接:http://sikaile.net/kejilunwen/yysx/2344305.html
最近更新
教材專(zhuān)著