一類特定的微分方程解的增長(zhǎng)性
發(fā)布時(shí)間:2018-11-04 21:12
【摘要】:在本篇論文中,假設(shè)σ(Aj)=n(n為正整數(shù)),Aj如均為完全正則增長(zhǎng)函數(shù),hAj(θ)=cjhA0(θ),j=1,…,k-1,其中cj1且互不相同,我們證明了方程f(k)+Ak-1(z)f(k-1)+ …+A0(z)f=0的解.f(≠0)均為無(wú)窮級(jí)。并且,當(dāng)F(z)(≠0)為整函數(shù)時(shí),對(duì)于方程f(k)+Ak-1(z)f(k-1)+…+A0(z)f=F的解,我們還證明了:(1)最多只有一個(gè)解f0為有窮級(jí),其他解均滿足λ(f)=λ(f)=σ(f)=∞, λ2(f)=λ2(f)=σ2(f)≤max{n,σ(F)};(2)如果存在一個(gè)解f0為有窮級(jí)解,則σ(f0)≤max{n,λ(f0),σ(F)}.
[Abstract]:In this paper, we assume that 蟽 (Aj) = n (n is a positive integer), Aj, if they are all fully regular growth functions, hAj (胃) = cjhA0 (胃), JJ 1, 鈥,
本文編號(hào):2311152
[Abstract]:In this paper, we assume that 蟽 (Aj) = n (n is a positive integer), Aj, if they are all fully regular growth functions, hAj (胃) = cjhA0 (胃), JJ 1, 鈥,
本文編號(hào):2311152
本文鏈接:http://sikaile.net/kejilunwen/yysx/2311152.html
最近更新
教材專著