耦合神經(jīng)元系統(tǒng)的放電機(jī)理及同步研究
[Abstract]:The biological neuron system is composed of a large number of nerve cells. These nerve cells carry out abundant information transmission activities through the discharge, which constitute the information network of the biological neurons to support the normal life activities of the organism. The transmission of information between neuronal cells is realized by peak discharge, and different discharge modes encode different information. Therefore, we can explore the law and dynamic characteristics of neuronal discharge by studying the peak discharge of neuron system. Synchronization is ubiquitous in nature. In neuron system, the synchronization of discharge between two neuronal cells is of great significance to the memory, information balance and memory of the nervous system. The synchronous discharge between two nerve cells is the basis of the whole neural network, so the synchronization of the coupled neuron system between the two nerve cells is the key to the information transmission of the whole neural network. In this paper, the following studies have been done: (1) based on the chemical synaptic coupling of a single neuron system, the stability of the coupled neuron system is judged from the stability of a single neuron system, and the Hoppe bifurcation is obtained. By changing one parameter of the system, the dynamical characteristics of the coupled system with single parameter variation are studied, and the rich dynamical characteristics of the neuron system such as doubling bifurcation, periodic bifurcation and chaos are obtained. (2) the two-parameter plane bifurcation diagram of the system is given. By changing the two system parameters at the same time, the discharge characteristics of the coupled system in a particular value area are clearly displayed by different colors representing different discharge cycles. It can provide theoretical basis for the study of neural coding mode in medical experiments. The discrete third parameter observed the variation trend of two-parameter bifurcation and realized the study of coupling neuron dynamics through multi-parameter. (3) the synchronization of neurons was studied from the coupling strength of coupling neurons. Firstly, the relationship between the coupling strength and the system parameters is obtained theoretically, and the theory of stability equivalence and Lyapunov function is used in the theoretical derivation. It is difficult to achieve complete synchronization in the coupled neuron system under the weak coupling strength, but it is easy to achieve complete synchronization under the strong coupling strength. Then the synchronization of the coupled system under the joint action of the system parameters and the coupling strength is studied, and the synchronization diagram of whether the coupling system can achieve synchronization under the influence of the system parameters and the coupling strength is given. The effects of each system parameter on the synchronization of coupled systems are obtained. (4) the effects of delay and noise on the synchronization of coupled systems are considered. The factors of delay and noise are added to the coupled system respectively. Through numerical simulation, it can be found that the appropriate time delay and external noise are favorable to the synchronization of the coupled neuron system and the information transmission of the neural network can be promoted. However, the synchronization diagram of the coupled system with time-delay and coupling strength is given to reveal the synchronization between the time-delay and the noise failure system. (5) finally, the discharge period of the coupled subsystem under different coupling strengths is given. By comparing the discharge of the two subsystems under the same coupling strength, the influence of coupling strength on the coupling system is revealed. In this paper, the dynamic properties of coupled neuron system under the influence of multiple parameters and the coupling neuron synchronization under different parameters can be fully revealed, and how to achieve synchronization of coupled system to promote the information transmission of neural network can be obtained. The results can provide theoretical basis for medical physiological experiments and artificial intelligence.
【學(xué)位授予單位】:蘭州交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:Q42;O175
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 FAN DengGui;WANG QingYun;;Synchronization and bursting transition of the coupled Hindmarsh-Rose systems with asymmetrical time-delays[J];Science China(Technological Sciences);2017年07期
2 李洪明;張素麗;;恒電流刺激下神經(jīng)元Chay模型的Hopf分岔分析[J];太原理工大學(xué)學(xué)報(bào);2013年01期
3 徐國麗;鄔開俊;解寶;;Ca~(2+)振蕩模型的動(dòng)力學(xué)行為及耦合同步性研究[J];蘭州交通大學(xué)學(xué)報(bào);2012年03期
4 曹淑紅;段利霞;唐旭暉;趙勇;;具有時(shí)滯的耦合Hindmarsh-Rose神經(jīng)元系統(tǒng)的放電模式[J];動(dòng)力學(xué)與控制學(xué)報(bào);2012年01期
5 翟德紅;段利霞;唐旭暉;趙勇;樊登貴;陸啟韶;;耦合Hindmarsh-Rose神經(jīng)元的同步放電模式及轉(zhuǎn)遷[J];動(dòng)力學(xué)與控制學(xué)報(bào);2011年03期
6 范云;張榮;過榴曉;;時(shí)變耦合網(wǎng)絡(luò)的完全同步[J];江南大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年03期
7 李遠(yuǎn)華;;非興奮型生物細(xì)胞內(nèi)鈣離子濃度振蕩的數(shù)值仿真[J];淮南師范學(xué)院學(xué)報(bào);2011年03期
8 鄭艷紅;王青云;;生物神經(jīng)網(wǎng)絡(luò)系統(tǒng)的動(dòng)力學(xué)研究進(jìn)展及展望[J];復(fù)雜系統(tǒng)與復(fù)雜性科學(xué);2010年Z1期
9 楊卓琴;;神經(jīng)元電活動(dòng)不同節(jié)律模式的幾種變化過程[J];物理學(xué)報(bào);2010年08期
10 ;Delay-induced coherence bi-resonance-like behavior in stochastic Hodgkin-Huxley neuron networks[J];Science China(Chemistry);2010年08期
相關(guān)博士學(xué)位論文 前5條
1 王關(guān)平;復(fù)雜時(shí)滯耦合系統(tǒng)的同步誘發(fā)機(jī)理及調(diào)控機(jī)制研究[D];蘭州理工大學(xué);2016年
2 李玉葉;三類神經(jīng)元網(wǎng)絡(luò)的時(shí)空動(dòng)力學(xué)行為研究[D];陜西師范大學(xué);2012年
3 劉玉亮;外電場(chǎng)作用下神經(jīng)元?jiǎng)恿W(xué)分析與同步控制[D];天津大學(xué);2011年
4 車艷秋;外電場(chǎng)下神經(jīng)元的分岔研究[D];天津大學(xué);2008年
5 段玉斌;神經(jīng)起步點(diǎn)放電峰峰間期的非線性動(dòng)力學(xué)[D];第四軍醫(yī)大學(xué);2002年
相關(guān)碩士學(xué)位論文 前8條
1 吳會(huì)霞;Chay神經(jīng)元放電的相位同步與轉(zhuǎn)遷過程[D];南京理工大學(xué);2015年
2 王利利;Hindmarsh-Rose神經(jīng)元網(wǎng)絡(luò)的同步研究[D];廣西師范大學(xué);2014年
3 王麗;自適應(yīng)時(shí)滯神經(jīng)元網(wǎng)絡(luò)動(dòng)力學(xué)行為的研究[D];魯東大學(xué);2013年
4 徐國麗;神經(jīng)元模型的動(dòng)力學(xué)特性研究[D];蘭州交通大學(xué);2013年
5 賈利平;非線性耦合Hindmarsh-Rose神經(jīng)元同步遷移[D];蘭州理工大學(xué);2012年
6 吳望生;耦合神經(jīng)元系統(tǒng)的同步研究[D];廣西師范大學(xué);2012年
7 王璐;神經(jīng)元模型中的非線性動(dòng)力學(xué)現(xiàn)象[D];陜西師范大學(xué);2011年
8 薛良;ML神經(jīng)元網(wǎng)絡(luò)的電路實(shí)現(xiàn)與分析[D];天津大學(xué);2008年
,本文編號(hào):2238870
本文鏈接:http://sikaile.net/kejilunwen/yysx/2238870.html