不確定型判斷矩陣的一致性研究
[Abstract]:In the decision analysis problem, it is difficult to accurately give the judgment value of the importance degree between the schemes. The decision maker usually can only give the approximate range of the judgment value, such as interval number, interval rough number and so on. It can reflect the fuzzy uncertainty between the objective things and accord with the human thinking habits by giving the judgment value of the important degree in the general range. In this paper, a new method of comparing the size of interval rough numbers is proposed by using the Analytic hierarchy process (AHP), in which the judgment matrix values are interval numbers and interval rough numbers. The research on the comparison of interval numbers in the existing literature has been fruitful, but the study on the size comparison of interval rough numbers is relatively lacking. The new comparison method fully absorbs the complementarities of many interval number size comparison methods. Based on the transitivity, the paper introduces the exponential interval number scale and the exponential interval rough number scale for the further study of the ranking method of interval rough number judgment matrix. Reasonable scale is the basis of constructing judgment matrix and the decisive factor that affects the final ranking. The new scale not only overcomes the gap between 1-9 scale and people's psychological feeling judgment, but also integrates the transitivity of index scale. The average relative error is smaller than other scales. The consistency of interval number judgment matrix and interval rough number judgment matrix is redefined. Under the single criterion, the consistency of the judgment matrix constructed by the given scale directly affects the sorting vector under the criterion, and indirectly determines the final sorting vector, so the judgment method of the consistency of the judgment matrix is very important. The new definition of consistency, from the angle of directly and indirectly judging the proportion of overlapped parts of the interval, grasps the idea that the judgment matrix with consistency has a large proportion of the interval in the indirect comparison. The new definition not only overcomes the shortcomings of the consistency definition of interval number judgment matrix and interval rough number judgment matrix, but also refers to the method of consistency condition given by Saaty. Through a lot of computer simulation experiments, the numerical conditions for consistency of judgment matrix are given.
【學(xué)位授予單位】:廣西大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O151.21
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳靈毓;于憲偉;;一種新的互補(bǔ)判斷矩陣排序方法[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2016年24期
2 劉開第;龐彥軍;金斕;;對AHP單準(zhǔn)則排序方法的改進(jìn)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識;2015年12期
3 袁杰;梁雪春;;層次分析法中判斷矩陣的一致性改進(jìn)[J];統(tǒng)計(jì)與決策;2014年12期
4 李建;李俊宏;;基于最大滿意度的互補(bǔ)判斷矩陣排序方法[J];模糊系統(tǒng)與數(shù)學(xué);2014年02期
5 周宏安;;基于最小偏差和優(yōu)勢度的區(qū)間數(shù)互補(bǔ)判斷矩陣排序法[J];運(yùn)籌與管理;2013年02期
6 靳鳳俠;黃天民;;區(qū)間數(shù)判斷矩陣滿意一致性的判定方法和方案的排序[J];控制與決策;2013年03期
7 李丁;韓偉一;汪云林;;關(guān)于層次分析法的數(shù)值試驗(yàn)[J];統(tǒng)計(jì)與信息論壇;2013年02期
8 邱滌珊;賀川;朱曉敏;;基于概率可信度的區(qū)間數(shù)排序方法[J];控制與決策;2012年12期
9 呂躍進(jìn);程宏濤;覃菊瑩;;基于判斷可信度的層次分析排序方法[J];控制與決策;2012年05期
10 劉勝;張玉廷;于大泳;;動態(tài)三角模糊數(shù)互反判斷矩陣一致性及修正[J];兵工學(xué)報(bào);2012年02期
相關(guān)碩士學(xué)位論文 前2條
1 何朝麗;基于區(qū)間粗糙數(shù)多屬性決策模型若干問題的研究[D];廣西大學(xué);2014年
2 靳宗偉;基于區(qū)間粗糙數(shù)的多屬性決策方法研究[D];廣西大學(xué);2013年
,本文編號:2224746
本文鏈接:http://sikaile.net/kejilunwen/yysx/2224746.html