基于貝葉斯B樣條的結(jié)構(gòu)方程模型
[Abstract]:In this paper, the structural equations in SEM are estimated by B-spline, and the structural equation model (SEM), is further improved so that the modified SEM can depict the more complex functional relations among latent variables, in addition, the number of B-spline nodes is regarded as a random variable. The Bayesian average method is used to determine the optimal number of nodes in the model, which ensures the objectivity of node selection. Finally, a specific MCMC algorithm for estimating the unknown parameters of SEM is given. The main contents of this paper are as follows: the first part is a brief introduction of the theoretical basis needed for the study of this paper. This section mainly deals with the introduction of structural equation model, Bayesian theory, the basis of spline function and the content of MCMC algorithm. The second part is the construction of general non-parametric SEM model. First of all, the measurement equations constructed separately are suitable for dealing with two different data types. Then, the structural equations of SEM are estimated by B-spline with indefinite number of nodes, and the number of splines and the location of nodes are determined on the basis of determining the number of splines and the location of nodes. The probabilistic measure transformation method is used to ensure that the spline node interval can cover the value interval of the observation variable and ensure the validity of the model. In the third part, the restrictive conditions of the model are given. In the second part, the general meaning of SEM, is constructed, but under its framework, the parameters of the new SEM are not completely determined. This module has some reasonable constraints on the value of relevant parameters to ensure that the newly constructed SEM can be recognized. The fourth part is the Bayesian interpretation of the unknown parameters of SEM. In this part, the rational prior distribution of the relative parameters is given, which is mainly about the selection of the prior distribution of the number of nodes and the distribution of all the conditions of each parameter when the number of nodes is given. In the fifth part, the MCMC algorithm for estimating the unknown parameters of new SEM is given. Because the number of nodes is regarded as a random variable, the dimension of the model is constantly changing. In order to estimate the specific values of unknown parameters, the reversible jump MCMC algorithm is used to sample and the sampling steps are given. In the end, the author points out the shortcomings of the model and the direction of further study, and gives a demonstration program of MCMC sampling principle in the appendix.
【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O212
【參考文獻】
相關(guān)期刊論文 前4條
1 張偉;杜冰清;;基于馬爾可夫模型的山東省各地區(qū)旅游總收入預(yù)測[J];揚州大學(xué)學(xué)報(人文社會科學(xué)版);2016年04期
2 馮志偉;;隱馬爾可夫模型及其在自動詞類標(biāo)注中的應(yīng)用[J];燕山大學(xué)學(xué)報;2013年04期
3 尤芳;;Gibbs抽樣在正態(tài)混合模型中的參數(shù)估計[J];統(tǒng)計與決策;2009年15期
4 盧一強,茆詩松;非參數(shù)Bayes樣條回歸[J];華東師范大學(xué)學(xué)報(自然科學(xué)版);2004年04期
相關(guān)碩士學(xué)位論文 前9條
1 高僮;基于動態(tài)故障樹和蒙特卡洛仿真的列控系統(tǒng)風(fēng)險分析研究[D];北京交通大學(xué);2014年
2 張國華;基于視頻流的復(fù)雜場景的公車人頭對象計數(shù)研究[D];南京航空航天大學(xué);2014年
3 楊婷;基于創(chuàng)新擴散理論的情景感知服務(wù)擴散影響研究[D];北京郵電大學(xué);2013年
4 李冠穎;旅游業(yè)創(chuàng)新能力影響因素評價指標(biāo)體系構(gòu)建研究[D];上海交通大學(xué);2013年
5 張培利;企業(yè)社會責(zé)任表現(xiàn)對人才吸引力的影響路徑[D];湖北大學(xué);2011年
6 柴思楠;基于結(jié)構(gòu)方程模型的我國上市公司股票收益影響因素研究[D];哈爾濱工業(yè)大學(xué);2010年
7 龔曉明;量熱法電子束吸收劑量測量方法的研究[D];中國計量科學(xué)研究院;2010年
8 周玉蘭;基于多傳感器信息融合的輪胎壓力監(jiān)測系統(tǒng)研究[D];西北工業(yè)大學(xué);2005年
9 曹小鵬;“全球資產(chǎn)動態(tài)分配系統(tǒng)”中的幾個關(guān)鍵問題的研究[D];西安電子科技大學(xué);2005年
,本文編號:2214994
本文鏈接:http://sikaile.net/kejilunwen/yysx/2214994.html