一類(lèi)平面3次擴(kuò)展擬齊次系統(tǒng)的分岔
發(fā)布時(shí)間:2018-08-28 18:44
【摘要】:本文研究一類(lèi)平面3次擴(kuò)展擬齊次多項(xiàng)式微分系統(tǒng)的分岔問(wèn)題;證明在3參數(shù)族(a,b,c)∈R~3中,此系統(tǒng)不存在極限環(huán);運(yùn)用擬齊次吹脹(blow-up)和無(wú)窮遠(yuǎn)奇點(diǎn)的Poincaré-Lyapunov緊化等方法,給出系統(tǒng)的全局拓?fù)湎鄨D.
[Abstract]:In this paper, the bifurcation problem of a class of planar cubic extended quasi-homogeneous polynomial differential systems is studied. It is proved that there is no limit cycle for a class of 3-parameter families (aqbc) 鈭,
本文編號(hào):2210276
[Abstract]:In this paper, the bifurcation problem of a class of planar cubic extended quasi-homogeneous polynomial differential systems is studied. It is proved that there is no limit cycle for a class of 3-parameter families (aqbc) 鈭,
本文編號(hào):2210276
本文鏈接:http://sikaile.net/kejilunwen/yysx/2210276.html
最近更新
教材專(zhuān)著