天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

關(guān)于Aluthge變換的相關(guān)結(jié)論

發(fā)布時(shí)間:2018-07-31 08:04
【摘要】:數(shù)值域是當(dāng)今數(shù)學(xué)比較熱門(mén)的話題之一,自從Toeplitz-Hausdorff定理出現(xiàn)之后,關(guān)于數(shù)值域的研究開(kāi)始變得活躍起來(lái).關(guān)于數(shù)值域的研究涉及到基礎(chǔ)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的許多分支,并且在這些領(lǐng)域取得了廣泛的應(yīng)用.自從1990年,Ariyadasa Aluthge引入Aluthge變換(?)與2001年,Takeaki Yamazaki引入*-Aluthge變換(?)(*)之后,關(guān)于T,(?),(?)(*)等算子各種性質(zhì)的研究也引起大多數(shù)學(xué)者的注意,本文主要整理前人的這些結(jié)果.下面介紹本文的主要內(nèi)容:第一章是引言及相關(guān)的預(yù)備知識(shí).第二章是Aluthge變換及廣義Aluthge變換的一些結(jié)論,首先介紹(?),(?)(*)及(?)λ,(?)λ(*)的定義,其次介紹它們的一些基本性質(zhì),最后介紹W(T),W((?)),以及W((?)(*))之間的關(guān)系,總結(jié)了W((?))=W((?)(*))這一結(jié)論.對(duì)比著也有(?)λ與(?)λ(*)數(shù)值域相等的結(jié)論.第三章主要總結(jié)關(guān)于Aluthge變換的譜圖形的相關(guān)結(jié)論,首先介紹譜圖形的定義,再通過(guò)一些引理及定理,最后總結(jié)出:在大多數(shù)情況下,T的譜圖形與(?)的譜圖相一致.第四章主要總結(jié)關(guān)于復(fù)對(duì)稱算子Aluthge變換的一些結(jié)論,首先介紹共軛及復(fù)對(duì)稱的定義,再通過(guò)一些引理及定理總結(jié)本章的五個(gè)主要結(jié)論:(1)復(fù)對(duì)稱算子的Aluthge變換仍然是復(fù)對(duì)稱的.(2)若T是復(fù)對(duì)稱的算子,則((?))*與((?)*)是酉等價(jià)的.(3)若T是復(fù)對(duì)稱算子,則(?)=T(?)T是正規(guī)的.(4)(?)=0(?)T 2=0.(5)滿足T 2=0的算子一定是復(fù)對(duì)稱算子.第五章主要總結(jié)關(guān)于Aluthge變換極分解的一些結(jié)論,介紹了Aluthge變換極分解的形式以及雙正規(guī)算子的一些結(jié)論.
[Abstract]:Numerical range is one of the most popular topics in mathematics nowadays. Since the emergence of Toeplitz-Hausdorff theorem, the research on numerical range has become more and more active. The research on numerical range involves many branches of basic mathematics and applied mathematics, and has been widely used in these fields. Since 1990, Ariyadasa Aluthge has introduced Aluthge transform (?) After the introduction of Takeaki Yamazaki in 2001, the study on the properties of operators such as T, (?) (*) has also attracted the attention of most scholars. In this paper, these results are mainly summarized. The following is the main content of this paper: the first chapter is the introduction and related preparatory knowledge. In the second chapter, some conclusions of Aluthge transform and generalized Aluthge transform are given. Firstly, the definitions of (?), (?) (*) and (?) 位, (?) 位 (*) are introduced, and then some basic properties of W (T) W (?), and W (?) (*) are introduced, and the conclusion of W (?) W (?) (*) is summarized. In contrast, we also have the conclusion that (?) 位 and (?) 位 (*) are equal to each other. The third chapter summarizes the related conclusions about the spectral graph of Aluthge transform, first introduces the definition of spectral graph, then through some Lemma and theorem, finally concludes: in most cases, the spectral graph of T and (?) The spectral patterns are consistent with each other. In chapter 4, some conclusions about Aluthge transformation of complex symmetric operators are summarized. Firstly, the definitions of conjugate and complex symmetry are introduced. The five main conclusions of this chapter are summarized by some Lemma and theorems: (1) the Aluthge transformation of complex symmetric operators is still complex symmetric. (2) if T is a complex symmetric operator, then (?) * and (?) *) are unitary equivalent. (3) if T is a complex symmetric operator, Then T (?) T (?) T is normal. (4) 0 (?) T 2 0. (5) the operator satisfying T2G 0 must be a complex symmetric operator. In chapter 5, we summarize some conclusions about pole decomposition of Aluthge transform, and introduce the form of pole decomposition of Aluthge transform and some conclusions of bimormal operator.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O177

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王曉霞,賀祖國(guó);向量值函數(shù)空間中J-對(duì)稱算子的J-自伴延拓[J];系統(tǒng)科學(xué)與數(shù)學(xué);2000年04期

2 魏廣生;對(duì)稱算子自伴域的一種新描述[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);1996年03期

3 朱國(guó)城;關(guān)于強(qiáng)對(duì)稱和遺傳對(duì)稱算子性質(zhì)的幾點(diǎn)注記[J];科學(xué)通報(bào);1986年02期

4 A.N.kochuber;何萬(wàn)生;;論正定對(duì)稱算子的擴(kuò)張[J];張掖師專學(xué)報(bào)(綜合版);1988年01期

5 劉景麟;;關(guān)于J對(duì)稱算子的J自伴延拓[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年03期

6 王忠,傅守忠;向量值J-對(duì)稱算子的J-自伴延拓[J];內(nèi)蒙古工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年01期

7 王曉歡;高宗升;;復(fù)對(duì)稱算子的一些等價(jià)性質(zhì)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2010年08期

8 陳黎麗;一個(gè)(2+1)維的可積sinb-Gordon方程[J];寧波大學(xué)學(xué)報(bào)(理工版);1997年04期

9 胡昆明;;確定等價(jià)電子楊盤(pán)基的等概率比對(duì)方法[J];物理學(xué)報(bào);2008年10期

10 丁文宇;;J-對(duì)稱算子J-自伴擴(kuò)張的譜[J];肇慶學(xué)院學(xué)報(bào);2007年02期

相關(guān)博士學(xué)位論文 前1條

1 李春光;復(fù)對(duì)稱算子及相關(guān)問(wèn)題[D];吉林大學(xué);2012年

相關(guān)碩士學(xué)位論文 前4條

1 孟玉;關(guān)于Aluthge變換的相關(guān)結(jié)論[D];吉林大學(xué);2017年

2 樊萍;對(duì)稱算子空間上初等映射的可加性[D];陜西師范大學(xué);2011年

3 丁文宇;J-對(duì)稱算子及其J-自伴擴(kuò)張的譜[D];內(nèi)蒙古工業(yè)大學(xué);2007年

4 張國(guó)棟;Banach代數(shù)上對(duì)稱算子空間的保不變量問(wèn)題[D];黑龍江大學(xué);2003年

,

本文編號(hào):2154950

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2154950.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d35bb***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
91亚洲国产—区=区a| 亚洲精品黄色片中文字幕| 亚洲男人的天堂就去爱| 亚洲成人久久精品国产| 亚洲欧洲成人精品香蕉网| 精品人妻av区波多野结依| 亚洲午夜福利视频在线| 国产成人精品国产成人亚洲| 久久精品久久精品中文字幕| 欧美日韩国产二三四区| 久久永久免费一区二区| 久久亚洲午夜精品毛片| 亚洲国产性生活高潮免费视频| 精品久久少妇激情视频| 中文字幕亚洲视频一区二区| 午夜精品成年人免费视频| 中文字幕日韩欧美一区| 精品国产一区二区欧美| 东北女人的逼操的舒服吗| 东京热电东京热一区二区三区| 男女午夜在线免费观看视频| 精品一区二区三区三级视频| 亚洲国产成人久久99精品| 国产精品丝袜美腿一区二区| 最近最新中文字幕免费| 丝袜人妻夜夜爽一区二区三区| 精品少妇一区二区视频| 久久成人国产欧美精品一区二区| 亚洲精品欧美精品日韩精品| 欧美日韩亚洲国产精品| 日韩欧美高清国内精品| 成人免费观看视频免费| 色综合久久超碰色婷婷| 亚洲视频一级二级三级| 国产一级片内射视频免费播放| 激情内射日本一区二区三区| 中国一区二区三区人妻| 色综合伊人天天综合网中文| 人妻乱近亲奸中文字幕| 国产又粗又猛又爽色噜噜 | 激情综合网俺也狠狠地|