關(guān)于Aluthge變換的相關(guān)結(jié)論
[Abstract]:Numerical range is one of the most popular topics in mathematics nowadays. Since the emergence of Toeplitz-Hausdorff theorem, the research on numerical range has become more and more active. The research on numerical range involves many branches of basic mathematics and applied mathematics, and has been widely used in these fields. Since 1990, Ariyadasa Aluthge has introduced Aluthge transform (?) After the introduction of Takeaki Yamazaki in 2001, the study on the properties of operators such as T, (?) (*) has also attracted the attention of most scholars. In this paper, these results are mainly summarized. The following is the main content of this paper: the first chapter is the introduction and related preparatory knowledge. In the second chapter, some conclusions of Aluthge transform and generalized Aluthge transform are given. Firstly, the definitions of (?), (?) (*) and (?) 位, (?) 位 (*) are introduced, and then some basic properties of W (T) W (?), and W (?) (*) are introduced, and the conclusion of W (?) W (?) (*) is summarized. In contrast, we also have the conclusion that (?) 位 and (?) 位 (*) are equal to each other. The third chapter summarizes the related conclusions about the spectral graph of Aluthge transform, first introduces the definition of spectral graph, then through some Lemma and theorem, finally concludes: in most cases, the spectral graph of T and (?) The spectral patterns are consistent with each other. In chapter 4, some conclusions about Aluthge transformation of complex symmetric operators are summarized. Firstly, the definitions of conjugate and complex symmetry are introduced. The five main conclusions of this chapter are summarized by some Lemma and theorems: (1) the Aluthge transformation of complex symmetric operators is still complex symmetric. (2) if T is a complex symmetric operator, then (?) * and (?) *) are unitary equivalent. (3) if T is a complex symmetric operator, Then T (?) T (?) T is normal. (4) 0 (?) T 2 0. (5) the operator satisfying T2G 0 must be a complex symmetric operator. In chapter 5, we summarize some conclusions about pole decomposition of Aluthge transform, and introduce the form of pole decomposition of Aluthge transform and some conclusions of bimormal operator.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:O177
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王曉霞,賀祖國(guó);向量值函數(shù)空間中J-對(duì)稱算子的J-自伴延拓[J];系統(tǒng)科學(xué)與數(shù)學(xué);2000年04期
2 魏廣生;對(duì)稱算子自伴域的一種新描述[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);1996年03期
3 朱國(guó)城;關(guān)于強(qiáng)對(duì)稱和遺傳對(duì)稱算子性質(zhì)的幾點(diǎn)注記[J];科學(xué)通報(bào);1986年02期
4 A.N.kochuber;何萬(wàn)生;;論正定對(duì)稱算子的擴(kuò)張[J];張掖師專學(xué)報(bào)(綜合版);1988年01期
5 劉景麟;;關(guān)于J對(duì)稱算子的J自伴延拓[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年03期
6 王忠,傅守忠;向量值J-對(duì)稱算子的J-自伴延拓[J];內(nèi)蒙古工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);1999年01期
7 王曉歡;高宗升;;復(fù)對(duì)稱算子的一些等價(jià)性質(zhì)[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2010年08期
8 陳黎麗;一個(gè)(2+1)維的可積sinb-Gordon方程[J];寧波大學(xué)學(xué)報(bào)(理工版);1997年04期
9 胡昆明;;確定等價(jià)電子楊盤(pán)基的等概率比對(duì)方法[J];物理學(xué)報(bào);2008年10期
10 丁文宇;;J-對(duì)稱算子J-自伴擴(kuò)張的譜[J];肇慶學(xué)院學(xué)報(bào);2007年02期
相關(guān)博士學(xué)位論文 前1條
1 李春光;復(fù)對(duì)稱算子及相關(guān)問(wèn)題[D];吉林大學(xué);2012年
相關(guān)碩士學(xué)位論文 前4條
1 孟玉;關(guān)于Aluthge變換的相關(guān)結(jié)論[D];吉林大學(xué);2017年
2 樊萍;對(duì)稱算子空間上初等映射的可加性[D];陜西師范大學(xué);2011年
3 丁文宇;J-對(duì)稱算子及其J-自伴擴(kuò)張的譜[D];內(nèi)蒙古工業(yè)大學(xué);2007年
4 張國(guó)棟;Banach代數(shù)上對(duì)稱算子空間的保不變量問(wèn)題[D];黑龍江大學(xué);2003年
,本文編號(hào):2154950
本文鏈接:http://sikaile.net/kejilunwen/yysx/2154950.html