Degasperis-Procesi方程解的漸進(jìn)性質(zhì)
發(fā)布時(shí)間:2018-07-31 07:14
【摘要】:主要研究Degasperis-Procesi(DP)方程強(qiáng)解的漸近性質(zhì),即通過(guò)對(duì)其強(qiáng)解的動(dòng)量密度用漸近密度的方法,并在漸近密度唯一的假定下,證實(shí)了DP方程的正動(dòng)量密度的漸進(jìn)密度是支集在正軸上的Dirac測(cè)度的組合,且當(dāng)時(shí)間趨于無(wú)窮時(shí),動(dòng)量密度集中在不同速度向右移動(dòng)的小區(qū)域中.
[Abstract]:The asymptotic property of the strong solution of Degasperis-Procesi (DP) equation is studied, that is, by using the method of asymptotic density for the momentum density of its strong solution, and under the assumption that the asymptotic density is unique, It is proved that the asymptotic density of the positive momentum density of DP equation is a combination of Dirac measures supported on the positive axis, and when the time tends to infinity, the momentum density is concentrated in a small region with different velocities moving to the right.
【作者單位】: 塔里木大學(xué)信息工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(61563046,61501314) 塔里木大學(xué)校長(zhǎng)基金青年創(chuàng)新資金(TDZKQN201507)
【分類號(hào)】:O175
本文編號(hào):2154831
[Abstract]:The asymptotic property of the strong solution of Degasperis-Procesi (DP) equation is studied, that is, by using the method of asymptotic density for the momentum density of its strong solution, and under the assumption that the asymptotic density is unique, It is proved that the asymptotic density of the positive momentum density of DP equation is a combination of Dirac measures supported on the positive axis, and when the time tends to infinity, the momentum density is concentrated in a small region with different velocities moving to the right.
【作者單位】: 塔里木大學(xué)信息工程學(xué)院;
【基金】:國(guó)家自然科學(xué)基金(61563046,61501314) 塔里木大學(xué)校長(zhǎng)基金青年創(chuàng)新資金(TDZKQN201507)
【分類號(hào)】:O175
【相似文獻(xiàn)】
相關(guān)期刊論文 前1條
1 康順光;賈佳;;關(guān)于Camassa-Holm方程動(dòng)量密度的緊支集在半軸上的估計(jì)[J];純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué);2014年03期
相關(guān)碩士學(xué)位論文 前2條
1 康順光;Camassa-Holm方程解的動(dòng)量密度緊支集的估計(jì)[D];湘潭大學(xué);2011年
2 郭偉偉;Camassa-Holm方程解的爆破準(zhǔn)則與動(dòng)力學(xué)[D];湘潭大學(xué);2012年
,本文編號(hào):2154831
本文鏈接:http://sikaile.net/kejilunwen/yysx/2154831.html
最近更新
教材專著