分段檢驗(yàn)理論研究及其應(yīng)用
[Abstract]:The segmentation test theory mainly includes two parts: ordered sample clustering and segmental hypothesis test. Piecewise test theory has been widely used in the fields of enterprise marketing effect, improving quality and effectiveness. It is of great significance to accurately evaluate the effectiveness of relevant measures or policies for the management of policies or measures. Therefore, it is very important to study the theory of subsection test and its application. In the aspect of ordered sample clustering, first of all, an optimization model based on intra-group deviation square sum and inter-group deviation square sum is proposed to realize ordered sample clustering. It is applied to the classification of historical data of ambient air index in Chengdu and Beijing. When the sample size is large, the optimization model based on F statistics must store the F value of each class, and the optimal partition method must store the corresponding diameter of each class, which makes the calculation efficiency poor. The simulated annealing algorithm has a good global search ability. Combining the simulated annealing algorithm with the objective function of the optimal segmentation method can avoid the diameter of the storage class and improve the computational efficiency of the algorithm. Therefore, an ordered sample clustering based on simulated annealing algorithm is proposed. Finally, using the historical data of Chengdu Ambient Air Index, a good classification result is obtained. In segmented hypothesis testing, there are two categories according to the correlation of samples. When the piecewise samples are independent of each other, the classical hypothesis test theory is proposed to test the mean and variance parameters. The classical hypothesis test theory and the ordered sample clustering based on F statistics are combined to evaluate the effect of ambient air control in Chengdu. When there is a short-term autocorrelation in segmented samples, combining with the properties of stationary time series, the mean and variance parameter test under normal assumption is modified, and the variance of sample mean and sample variance is extended to the gamma distribution family. Finally, the piecewise test theory is combined with the ordered sample clustering of the optimization model based on F statistics to evaluate the environmental air control effect of Beijing government.
【學(xué)位授予單位】:四川師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O212.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姜波;柏廣宇;李經(jīng)緯;;環(huán)境空氣質(zhì)量評(píng)價(jià)體系研究[J];環(huán)境科學(xué)與管理;2016年01期
2 蔣君;徐蔚鴻;潘楚;;基于粒計(jì)算和模擬退火的K-medoids聚類算法[J];計(jì)算機(jī)仿真;2015年12期
3 符璐;呂王勇;甘茂林;;成都市環(huán)境空氣治理效應(yīng)評(píng)價(jià)——基于有序樣本聚類與分類檢驗(yàn)?zāi)P蚚J];統(tǒng)計(jì)與信息論壇;2015年12期
4 劉杰;楊鵬;呂文生;王金海;;基于北京市6類污染物的環(huán)境空氣質(zhì)量評(píng)價(jià)方法[J];安全與環(huán)境學(xué)報(bào);2015年01期
5 任鋼;;基于t-分布假設(shè)檢驗(yàn)的企業(yè)營(yíng)銷效益評(píng)價(jià)[J];統(tǒng)計(jì)與決策;2014年06期
6 鄧森林;陳衛(wèi)東;;基于遺傳模擬退火的K-means聚類方法[J];電子設(shè)計(jì)工程;2014年06期
7 王雅靜;;假設(shè)檢驗(yàn)在質(zhì)量管理中的應(yīng)用[J];企業(yè)研究;2012年10期
8 蔣志方;王德明;杜曉亮;孟祥旭;李慎芳;;基于結(jié)構(gòu)優(yōu)化的RAN城市環(huán)境空氣質(zhì)量預(yù)測(cè)模型[J];山東大學(xué)學(xué)報(bào)(工學(xué)版);2010年06期
9 石建輝;;基于遺傳算法的有序樣本聚類及其應(yīng)用[J];統(tǒng)計(jì)與決策;2010年23期
10 張齊;羅國(guó)亮;李佳;趙坤榮;;優(yōu)化進(jìn)化神經(jīng)網(wǎng)絡(luò)的空氣質(zhì)量預(yù)測(cè)研究[J];計(jì)算機(jī)工程與應(yīng)用;2009年28期
,本文編號(hào):2154631
本文鏈接:http://sikaile.net/kejilunwen/yysx/2154631.html