三類條件分拆函數(shù)同余性質(zhì)的研究
[Abstract]:The congruence property of conditional partition function is one of the hot issues in combinatorial mathematics. It has extensive and close relations with many branches of mathematics, such as q-series, number theory, algebra, machine proving, and so on, and is widely and closely related in mathematics, physics, probability theory, etc. Computer science and other fields have important applications. In recent years, although mathematical researchers have discovered many congruence relations of conditional partition functions, there are still many problems to be solved. In this paper, the congruence properties of generalized Frobenius-6 coloring partition function, conditional Binary partition function and Overpartitions partition function are studied. The main work is as follows: in the first chapter, the background of conditional partition function is introduced. Research progress and research content of this paper. In the second chapter, we prove a conjecture about the congruence relation of generalized Frobenius-6 coloring partition function (6fnc module 243) proposed by Professor Baruah and Sarmah by means of the generating function of 6fnc (10) (given by Hirschhorn), and by using block formula and q-series operation. On this basis, we also establish some new congruence relations for the higher power of the generalized Frobenius-6 coloring partition function (6fnc module 3). In chapter 3, by using the algebraic combination method and q-series operations, we prove a large number of congruence relations on the higher power of the nW) (module 2 and 3 of the conditional Binary partition function of Ramanujan type, thus solving an open problem put forward by professors Lan and Sellers. In chapter 4, we first establish the generating function of (?) (5n) by using the computer algebra method and the identity of theta function, then we establish some new infinite family congruence relations about the Overpartitions partition function (?) (n) (module 5 and 9) by using the quadratic residue theory. The conclusions given by Treneer, Chenan Sunn Wang and Zhang are generalized.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:O157
【相似文獻】
相關(guān)期刊論文 前9條
1 陳士超;車穎濤;;關(guān)于限制性m-位分拆函數(shù)(英文)[J];數(shù)學(xué)季刊;2012年02期
2 曹惠中;;乘法分拆函數(shù)的均值[J];山東大學(xué)學(xué)報(自然科學(xué)版);1992年02期
3 黃允寶;;擬乘法分拆函數(shù)的上界[J];杭州教育學(xué)院學(xué)報(社會科學(xué)版);1995年04期
4 楊曉春;帶周期裂紋的不同材料拼接的彈性長條基本問題[J];寧夏大學(xué)學(xué)報(自然科學(xué)版);1992年03期
5 陳文立;分拆函數(shù)p(n)的下界[J];重慶師范學(xué)院學(xué)報(自然科學(xué)版);1997年04期
6 熊新華;;三次分拆數(shù)模5的冪[J];中國科學(xué):數(shù)學(xué);2011年01期
7 唐元生;乘法分拆函數(shù)的均值估計[J];數(shù)學(xué)雜志;1994年02期
8 呂瑞芳;分拆函數(shù)p(n)的下界[J];麗水師范專科學(xué)校學(xué)報;2002年02期
9 陳文立;關(guān)于分拆函數(shù)p(n)的下界[J];貴州師范大學(xué)學(xué)報(自然科學(xué)版);2002年04期
相關(guān)博士學(xué)位論文 前3條
1 戴浩波;某些分拆函數(shù)的算術(shù)性質(zhì)[D];上海交通大學(xué);2014年
2 朱佳文;分拆函數(shù)的組合性質(zhì)研究[D];南開大學(xué);2012年
3 周蕊;經(jīng)典分拆函數(shù)及其同余公式[D];大連理工大學(xué);2013年
相關(guān)碩士學(xué)位論文 前2條
1 顧超;三類條件分拆函數(shù)同余性質(zhì)的研究[D];江蘇大學(xué);2017年
2 徐素英;分拆函數(shù)等式的推廣及超幾何函數(shù)恒等式的新證明[D];華東師范大學(xué);2008年
,本文編號:2147233
本文鏈接:http://sikaile.net/kejilunwen/yysx/2147233.html