變分不等式與非線(xiàn)性算子方程的逼近
[Abstract]:In this dissertation, we study some new variational inequalities (systems), fixed points, nonlinear operator equations and their common solutions in infinite dimensional real Hilbert spaces. In this paper, we improve Mann iterative method, mixed method, outer approximation method, outer gradient method and viscous iteration method by using projection operator technique, auxiliary principle technique and strongly positive bounded linear operator technique, respectively. Several new iterative algorithms are constructed and the convergence of iterative sequences is proved. The results are improved to extend and supplement the corresponding results in previous literatures. The full text is divided into five chapters. In the first chapter, we introduce the research background of variational inequality and nonlinear operator equation, review some basic concepts and theories that will be used in this paper, and introduce the main work and structure of this paper. In chapter 2, we study a new class of generalized set-valued nonlinear implicit quasi-variational inequality systems. Firstly, it is proved that the generalized set-valued nonlinear implicit quasi-variational inequality problems are equivalent to the corresponding fixed point problems and Wiener-Hopf equations respectively. Secondly, two new iterative algorithms are constructed by using the technique of projection operator and Wiener-Hopf equations. Finally, the existence of solutions and the convergence of iterative sequences for generalized set-valued nonlinear implicit quasi-variational inequality systems are proved. This is the first time that Wiener-Hopf equations are used to solve variational inequality system problems. By comparing the results obtained by the two methods, it is shown that the technique of Wiener-Hopf equations is more general than that of projection operator. In chapter 3, based on the second chapter, a new class of generalized set-valued strongly nonlinear mixed implicit quasi-variational-like inequality systems is studied by using the auxiliary principle technique. Firstly, the existence of solutions for the corresponding auxiliary variational inequality systems is proved. Then, a new iterative algorithm is constructed by using the existence of the solution. Finally, the existence of the solution and the convergence of the iterative sequence are proved. This is a yes answer to a public question raised by Noor et al. (Korean J.Comput.Appl.Math.199881: 73-89 J.Comput.appl.Math.1993 47: 285-312). In chapter 4, in order to find the common zero set of two families of finite maximal monotone mappings, the fixed point sets of nonexpansive mappings and the common element problems of solutions of variational inequalities with monotone Lipschitz continuous mappings, A new general hybrid iterative algorithm is introduced and studied. The algorithm is based on the following four famous methods: the: Mann iteration method, the hybrid method, the external approximation method and the outer gradient method. The existence of common elements and the strong convergence of iterative sequences are proved. The results of this chapter greatly extend and improve the corresponding results in [Wei L. Li Tan R. fixed Point Theory and applications s.2014 (1)]. In chapter 5, based on the content of chapter 4, a new generalized Mann type hybrid compound outer gradient CQ iterative algorithm is constructed by using the technique of strongly positive linear bounded operator. Then the solution set of variational inequalities with monotone Lipschtiz continuous mapping, the set of zeros of two families of finite maximal monotone mappings, and the common elements of fixed point sets of asymptotically 魏 -strictly pseudocontractive mappings with intermediate meaning are found. Finally, the existence of common elements and the strong convergence of iterative sequences are proved.
【學(xué)位授予單位】:上海師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:O177.91
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周彥;鄧?yán)?;多值一般混合似變分不等式的可解性[J];西南師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2005年06期
2 孫燕蘭;黃建華;;強(qiáng)向量F-隱補(bǔ)問(wèn)題及相應(yīng)的變分不等式[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年04期
3 J.L.Lions,郭友中;關(guān)于變分不等式及其應(yīng)用的若干問(wèn)題[J];數(shù)學(xué)進(jìn)展;1983年01期
4 史金松;;關(guān)于變分不等式及其應(yīng)用的述評(píng)[J];華水科技情報(bào);1984年04期
5 張石生,朱元國(guó);關(guān)于一類(lèi)隨機(jī)變分不等式和隨機(jī)擬變分不等式問(wèn)題[J];數(shù)學(xué)研究與評(píng)論;1989年03期
6 楊慶之;;關(guān)于參數(shù)變分不等式解的可計(jì)算界[J];河北師范大學(xué)學(xué)報(bào);1992年03期
7 張石生;變分不等式和相補(bǔ)問(wèn)題理論研究中的某些問(wèn)題及進(jìn)展[J];贛南師范學(xué)院學(xué)報(bào);1992年S1期
8 張石生;變分不等式和相補(bǔ)問(wèn)題理論研究中的某些問(wèn)題及進(jìn)展[J];贛南師范學(xué)院學(xué)報(bào);1992年S2期
9 何炳生;一類(lèi)廣義線(xiàn)性變分不等式的求解與應(yīng)用[J];中國(guó)科學(xué)(A輯 數(shù)學(xué) 物理學(xué) 天文學(xué) 技術(shù)科學(xué));1995年09期
10 李賢瑜,雷忠學(xué);半嚴(yán)格偽上強(qiáng)制映射及其在變分不等式中的應(yīng)用[J];江西師范大學(xué)學(xué)報(bào)(自然科學(xué)版);1995年03期
相關(guān)會(huì)議論文 前6條
1 李云翔;劉振海;;粘彈性壓電材料接觸問(wèn)題的H-半變分不等式方法[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)交叉研究進(jìn)展——2010(13)卷[C];2010年
2 范麗亞;;抽象的集值混合變分不等式解的存在性(英文)[A];中國(guó)運(yùn)籌學(xué)會(huì)第七屆學(xué)術(shù)交流會(huì)論文集(上卷)[C];2004年
3 陳益峰;盧禮順;周創(chuàng)兵;戴躍華;;Signorini型變分不等式方法在實(shí)際工程滲流問(wèn)題中的應(yīng)用[A];第九屆全國(guó)巖土力學(xué)數(shù)值分析與解析方法討論會(huì)論文集[C];2007年
4 韓澤;方亞平;李竹渝;;一類(lèi)產(chǎn)生于廣義國(guó)際金融均衡問(wèn)題的變分不等式的迭代算法[A];面向復(fù)雜系統(tǒng)的管理理論與信息系統(tǒng)技術(shù)學(xué)術(shù)會(huì)議專(zhuān)輯[C];2000年
5 丁協(xié)平;夏福全;;Banach空間中廣義混合變分不等式解的存在性和算法[A];2001年全國(guó)數(shù)學(xué)規(guī)劃及運(yùn)籌研討會(huì)論文集[C];2001年
6 姚鋒敏;滕春賢;;Nash博弈、變分不等式,Stackelberg博弈及MPEC問(wèn)題的關(guān)系[A];第四屆全國(guó)決策科學(xué)/多目標(biāo)決策研討會(huì)論文集[C];2007年
相關(guān)博士學(xué)位論文 前10條
1 王學(xué)永;變分不等式與線(xiàn)性約束分離優(yōu)化問(wèn)題的若干算法研究[D];重慶大學(xué);2015年
2 寇喜鵬;結(jié)構(gòu)變分不等式與凸優(yōu)化問(wèn)題的若干算法研究[D];重慶大學(xué);2015年
3 邱洋青;變分不等式與非線(xiàn)性算子方程的逼近[D];上海師范大學(xué);2016年
4 趙亞莉;廣義似變分不等式解的存在性和算法[D];大連理工大學(xué);2006年
5 陳爽;錐約束隨機(jī)變分不等式的求解及應(yīng)用[D];大連理工大學(xué);2014年
6 李云翔;H-半變分不等式及其在接觸力學(xué)中的應(yīng)用[D];中南大學(xué);2011年
7 胡夢(mèng)瑜;廣義變分不等式理論及其若干問(wèn)題[D];上海師范大學(xué);2007年
8 黃玲玲;變分不等式及其相關(guān)問(wèn)題的算法研究[D];西安電子科技大學(xué);2012年
9 王亞琴;廣義變分不等式的若干類(lèi)算法[D];上海師范大學(xué);2008年
10 白敏茹;變分不等式與平衡約束優(yōu)化的幾個(gè)理論問(wèn)題[D];湖南大學(xué);2004年
相關(guān)碩士學(xué)位論文 前10條
1 高玉立;一類(lèi)隨機(jī)變分不等式的抽樣平均近似方法[D];大連理工大學(xué);2009年
2 郝妍;擬似變分不等式及擬似變分不等式組解的靈敏性分析[D];遼寧師范大學(xué);2006年
3 邢翠;結(jié)構(gòu)型隨機(jī)變分不等式的準(zhǔn)蒙特卡洛方法[D];遼寧工程技術(shù)大學(xué);2011年
4 楊杰;一類(lèi)廣義凸映射及其優(yōu)化問(wèn)題的研究[D];集美大學(xué);2015年
5 郭智源;求解強(qiáng)制單調(diào)變分不等式的算法比較[D];南京大學(xué);2014年
6 呂麗霞;一類(lèi)可分離帶線(xiàn)性約束的變分不等式及應(yīng)用研究[D];南京財(cái)經(jīng)大學(xué);2014年
7 烏云高;一類(lèi)變分不等式和變分包含問(wèn)題解的存在性研究[D];內(nèi)蒙古大學(xué);2008年
8 張哲;基于變分不等式的金融超網(wǎng)絡(luò)研究[D];大連海事大學(xué);2010年
9 田慧瓊;不適定變分不等式的正則化方法[D];湖南師范大學(xué);2009年
10 郭守朋;混合變分不等式的算法及其應(yīng)用[D];西安電子科技大學(xué);2011年
,本文編號(hào):2137661
本文鏈接:http://sikaile.net/kejilunwen/yysx/2137661.html