芬斯勒幾何中的Landsberg曲率及相關(guān)問題研究
發(fā)布時(shí)間:2018-07-21 10:44
【摘要】:本文主要圍繞芬斯勒幾何中一類重要的幾何量——Landsberg曲率展開了深入研究。首先,我們對(duì)射影平坦的(α,β)-度量展開了研究,并分類刻畫了射影平坦的Berwald(α,β)-度量和射影平坦的弱Landsberg(α,β)-度量以及射影平坦且具有相對(duì)迷向平均Landsberg曲率的(α,β)-度量。其次,我們研究了具有相對(duì)迷向平均Landsberg曲率(即J+c(x)FI=0)的閉的芬斯勒流形,并證明了若c(x)在流形上恒為正或恒為負(fù),則該流形一定是黎曼流形。此外,本文研究了具有迷向平均Berwald曲率的芬斯勒度量F,并給出了F具有殆迷向S-曲率的一個(gè)充分條件。最后,與他人合作,本文給出了具有弱迷向旗曲率的芬斯勒度量所滿足的一個(gè)偏微分方程組;還給出了具有標(biāo)量旗曲率且具有常數(shù)平均Berwald曲率的芬斯勒度量的旗曲率K所滿足的一個(gè)恒等式。
[Abstract]:This paper focuses on a class of important geometric quantities in Finsler geometry, Landsberg curvature. Firstly, we study the projective flat (偽, 尾) -metric, and characterize the projective flat Berwald (偽, 尾) -metric and the projectively flat weakly Landsberg (偽, 尾) -metric and the projective flat (偽, 尾) -metric with the relative isotropic average Landsberg curvature. Secondly, we study the closed Fensler manifold with the relative isotropic mean Landsberg curvature (that is, J c (x) FI0), and prove that if c (x) is always positive or negative on the manifold, then the manifold must be Riemannian manifold. In addition, we study the Fensler metric F with isotropic mean Berwald curvature, and give a sufficient condition for F to have almost isotropic S-curvature. Finally, in cooperation with others, we give a partial differential equation system of Fensler metric with weak isotropic flag curvature. An identity of the flag curvature K of the Fensler metric with scalar flag curvature and constant average Berwald curvature is also given.
【學(xué)位授予單位】:重慶理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O186.1
本文編號(hào):2135269
[Abstract]:This paper focuses on a class of important geometric quantities in Finsler geometry, Landsberg curvature. Firstly, we study the projective flat (偽, 尾) -metric, and characterize the projective flat Berwald (偽, 尾) -metric and the projectively flat weakly Landsberg (偽, 尾) -metric and the projective flat (偽, 尾) -metric with the relative isotropic average Landsberg curvature. Secondly, we study the closed Fensler manifold with the relative isotropic mean Landsberg curvature (that is, J c (x) FI0), and prove that if c (x) is always positive or negative on the manifold, then the manifold must be Riemannian manifold. In addition, we study the Fensler metric F with isotropic mean Berwald curvature, and give a sufficient condition for F to have almost isotropic S-curvature. Finally, in cooperation with others, we give a partial differential equation system of Fensler metric with weak isotropic flag curvature. An identity of the flag curvature K of the Fensler metric with scalar flag curvature and constant average Berwald curvature is also given.
【學(xué)位授予單位】:重慶理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O186.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前6條
1 程新躍;劉樹華;殷麗;李婷婷;;關(guān)于具有相對(duì)迷向平均Landsberg曲率的芬斯勒流形的一個(gè)剛性定理[J];重慶理工大學(xué)學(xué)報(bào)(自然科學(xué));2017年08期
2 程新躍;李婷婷;殷麗;劉樹華;;具有特殊旗曲率性質(zhì)的芬斯勒度量的若干定理[J];西南大學(xué)學(xué)報(bào)(自然科學(xué)版);2017年04期
3 程新躍;劉樹華;;射影平坦且具有相對(duì)迷向平均Landsberg曲率的(α,β)-度量[J];重慶理工大學(xué)學(xué)報(bào)(自然科學(xué));2017年02期
4 ;A global rigidity theorem for weakly Landsberg manifolds[J];Science in China(Series A:Mathematics);2007年05期
5 ;On a class of weak Landsberg metrics[J];Science in China(Series A:Mathematics);2007年04期
6 程新躍;沈忠民;;PROJECTIVELY FLAT FINSLER METRICS WITH ALMOST ISOTROPIC S-CURVATURE[J];Acta Mathematica Scientia;2006年02期
,本文編號(hào):2135269
本文鏈接:http://sikaile.net/kejilunwen/yysx/2135269.html
最近更新
教材專著