基于Gamma分布缺失數(shù)據(jù)的分位數(shù)估計(jì)
[Abstract]:Missing data generally exist in the field of experimental research and social investigation. The problem of missing data results in the analysis task and the inaccuracy of statistical results. How to deal with the missing data effectively, how to make full use of the data information, accurately reflect the characteristics of the research group, and achieve the expected research goal, has become a difficult and hot issue in the current statistical research. Because the missing data often contain some important information of the whole, if we want to apply the statistical analysis method to the field of processing missing data, the general idea is to fill in the incomplete data first, so as to get the complete data set. Then the data set is analyzed and the conclusion is obtained to accurately reflect the true situation. In this paper, for the data missing problem under the non-random deletion mechanism, under certain assumptions, the supplementary data are given by the method of probability and statistics, and the statistical inference of the distribution parameters is given by using the method of probability and statistics on the premise of certain assumptions. Then we give the quantile estimation of the probability distribution of complete data. We are more concerned with the median (0.5 quartile), the quartile (the 14th quartile / 0.25-quartile, respectively), the quartile, the quartile and the quartile. The third quartile, the 0.05 quartile, and the 0.95 quartile. At the same time, we estimate the parameter and quantile of Gamma distribution under the assumption that the probability of success is exponential distribution (parameter 位 can be given according to the parameter of Gamma distribution and the ratio of missing data). The iterative formula of parameters is given. In the stage of simulation research, R language is used to simulate the missing ratio of 1 / 10 / 1 / 5 / 2 / 2 / 3, and the simulation results are compared with each other and good results are obtained. In many cases, the two-parameter model can not meet the actual needs, so we extend the model to three-parameter model, and give the iterative formula of the parameters, and explain the problem of parameter selection of success probability. It is helpful to deal with some problems of missing data in the future.
【學(xué)位授予單位】:華中師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O212.1
【參考文獻(xiàn)】
相關(guān)期刊論文 前8條
1 謝民育;吳茗;熊明;寧建輝;;指令性抽樣下總體均值和方差的估計(jì)及其應(yīng)用[J];應(yīng)用數(shù)學(xué)學(xué)報(bào);2010年02期
2 張星;郝偉;;不完備或缺失數(shù)據(jù)及其填補(bǔ)方法研究[J];福建電腦;2007年04期
3 劉富春;;基于修正容差關(guān)系的擴(kuò)充粗糙集模型[J];計(jì)算機(jī)工程;2005年24期
4 龐新生;缺失數(shù)據(jù)處理中相關(guān)問(wèn)題的探討[J];統(tǒng)計(jì)與信息論壇;2004年05期
5 王國(guó)胤;Rough集理論在不完備信息系統(tǒng)中的擴(kuò)充[J];計(jì)算機(jī)研究與發(fā)展;2002年10期
6 金勇進(jìn);缺失數(shù)據(jù)的插補(bǔ)調(diào)整[J];數(shù)理統(tǒng)計(jì)與管理;2001年06期
7 金勇進(jìn);缺失數(shù)據(jù)的加權(quán)調(diào)整(系列之Ⅳ)[J];數(shù)理統(tǒng)計(jì)與管理;2001年05期
8 金勇進(jìn),朱琳;不同差補(bǔ)方法的比較[J];數(shù)理統(tǒng)計(jì)與管理;2000年04期
相關(guān)碩士學(xué)位論文 前1條
1 袁中萸;多元線性回歸模型中缺失數(shù)據(jù)填補(bǔ)方法的效果比較[D];中南大學(xué);2008年
,本文編號(hào):2133593
本文鏈接:http://sikaile.net/kejilunwen/yysx/2133593.html