天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于圖挖掘的推特事件關(guān)聯(lián)性分析方法研究

發(fā)布時(shí)間:2018-06-26 11:26

  本文選題:推特 + 社團(tuán)檢測(cè); 參考:《電子科技大學(xué)》2017年碩士論文


【摘要】:隨著互聯(lián)網(wǎng)的發(fā)展,社交媒體在人們生活中的應(yīng)用越來越多樣化。而推特(Twitter)作為社交媒體中的佼佼者,已經(jīng)成為近年來最流行的社交媒體應(yīng)用之一。而社交媒體在政治事件中的影響也在與日俱增。2012美國(guó)總統(tǒng)奧巴馬連任、英國(guó)脫歐公投等一系列政治事件的背景中都出現(xiàn)了推特的身影。推特在事件傳播、反映民眾的政治傾向上有逐步取代傳統(tǒng)民意調(diào)查的趨勢(shì)。目前在社交媒體上的政治傾向研究主要針對(duì)文本中的特定信息來進(jìn)行分析,例如推文中的標(biāo)簽(hashtag)、提到(@)等。由于社交媒體數(shù)據(jù)不具有正式性,所以政治傾向分析的結(jié)果不夠精確。同時(shí)對(duì)于社交媒體中的大選選情預(yù)測(cè)并沒有特別完善的流程和方案。所以,本文通過圖挖掘的方法,對(duì)社交媒體中的政治類事件進(jìn)行分析研究。針對(duì)2016美國(guó)總統(tǒng)大選選情預(yù)測(cè)的問題,提出并設(shè)計(jì)了大選選情預(yù)測(cè)模型。本文的主要工作和創(chuàng)新點(diǎn)概括如下:(1)在推特?cái)?shù)據(jù)上進(jìn)行政治傾向情感分析和大選相關(guān)事件檢測(cè)。在情感分析上,針對(duì)推特信息簡(jiǎn)短、非正式、缺乏補(bǔ)充信息的特點(diǎn),本文采用了基于字典的情感分析方法,對(duì)推文的政治傾向性進(jìn)行判斷。同時(shí)對(duì)于情感分析中的反語(yǔ)鑒別難點(diǎn),通過推文的表情符以及用戶的歷史推文來提升情感分析的結(jié)果。在事件檢測(cè)中,針對(duì)美國(guó)總統(tǒng)大選的背景,本文采用了多次聚類、同義詞拓展,關(guān)鍵詞權(quán)重提升等方法,來對(duì)碎片事件進(jìn)行整合。該方法提升了大選相關(guān)事件檢測(cè)的性能。(2)利用圖挖掘的方法來對(duì)推特?cái)?shù)據(jù)進(jìn)行研究分析。由于推特?cái)?shù)據(jù)源上有多種多樣的信息,例如用戶,推文,圖片,視頻等等。而用戶的點(diǎn)贊,轉(zhuǎn)發(fā)和評(píng)論行為,往往也會(huì)表露出用戶的政治傾向。所以,本文采用復(fù)雜網(wǎng)絡(luò)分析方法,將不同類型的社交媒體數(shù)據(jù)投影到復(fù)雜網(wǎng)絡(luò)中,再根據(jù)實(shí)際需求,對(duì)社交媒體復(fù)雜網(wǎng)絡(luò)進(jìn)行分析。在大選預(yù)測(cè)結(jié)果中發(fā)現(xiàn)支持總統(tǒng)候選人的用戶社團(tuán)。這種分析方法不僅僅適用于大選選情預(yù)測(cè),還可以應(yīng)用于社交媒體的輿論導(dǎo)向分析、用戶影響力等方面。本文使用了真實(shí)社交媒體數(shù)據(jù),分別對(duì)情感分析方法,事件檢測(cè)模型和大選預(yù)測(cè)模型進(jìn)行實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果顯示,本文提出的大選預(yù)測(cè)模型可以對(duì)大選選情進(jìn)行正確預(yù)測(cè)。
[Abstract]:With the development of Internet, the application of social media in people's life is more and more diversified. Twitter, a leader in social media, has become one of the most popular social media applications in recent years. Social media influence in political events is also growing. 2012 U.S. President Barack Obama re-elected, the British Brexit referendum and other political events in the background of Twitter. Twitter's spread of events reflects a gradual displacing of traditional opinion polls from popular political tendencies. The current research on political orientation on social media is mainly focused on the analysis of specific information in the text, such as the tag (hashtag), mentioned in Twitter (@), and so on. Because social media data are not formal, the analysis of political tendencies is not accurate enough. At the same time, there is no particularly sound process and program for social media election predictions. Therefore, this paper analyzes the political events in social media by the method of graph mining. Aiming at the problem of presidential election prediction in 2016, this paper puts forward and designs a model of presidential election prediction. The main work and innovations of this paper are summarized as follows: (1) the analysis of political tendency and emotion and the detection of election-related events on Twitter data. In terms of affective analysis, in view of the features of short, informal and lack of supplementary information, this paper adopts a dictionary-based emotional analysis method to judge the political tendency of Twitter. At the same time, for the difficulty of identifying irony in affective analysis, the result of emotional analysis is improved by the emoji of tweets and the historical tweets of users. In the event detection, in view of the background of the American presidential election, this paper uses several methods, such as clustering, synonym extension, keyword weight enhancement, to integrate the debris events. This method improves the performance of election related event detection. (2) the method of graph mining is used to study and analyze Twitter data. Because Twitter data sources have a variety of information, such as users, tweets, pictures, videos and so on. Users' likes, retweets and comments often show their political inclination. Therefore, this paper uses the method of complex network analysis, projects different types of social media data to complex network, and then analyzes the complex social media network according to the actual demand. In the election forecast results found in support of the presidential candidate user community. This analysis method not only applies to election prediction, but also can be applied to social media opinion oriented analysis, user influence and so on. In this paper, real social media data are used to test affective analysis, event detection model and general election prediction model. The experimental results show that the proposed general election prediction model can correctly predict the election results.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:O157.5;TP391.1

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 張文韜;戴維·斯庫(kù)馬克;;“病毒般”的社交媒體[J];世界科學(xué);2013年02期

2 Alex Kantrowitz;文良;;2014年社交媒體的四大問題和預(yù)測(cè)[J];創(chuàng)新科技;2014年01期

3 朱星華;;從政府應(yīng)用與產(chǎn)業(yè)融合的視角看社交媒體的發(fā)展——以美國(guó)社交媒體的發(fā)展及政府對(duì)其的應(yīng)用為例[J];全球科技經(jīng)濟(jì)w,

本文編號(hào):2070235


資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2070235.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3044c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
国产乱淫av一区二区三区| 国产精品亚洲综合天堂夜夜| 粉嫩内射av一区二区| 激情综合五月开心久久| 成人亚洲国产精品一区不卡| 日本乱论一区二区三区 | 久久精品视频就在久久| 色综合久久中文综合网| 成人午夜免费观看视频| 台湾综合熟女一区二区| 特黄大片性高水多欧美一级| 中日韩美一级特黄大片| 亚洲国产四季欧美一区| 欧美不卡高清一区二区三区| 精品国产一区二区欧美| 日韩欧美三级视频在线| 日韩一级免费中文字幕视频| 国产成人精品99在线观看| 欧美日韩一区二区综合| 欧美日韩国产自拍亚洲| 欧美日韩少妇精品专区性色| 国产丝袜女优一区二区三区| 欧美一级黄片免费视频| 91人妻人人做人碰人人九色| 91精品国产综合久久不卡| 99久久免费看国产精品| 黄色三级日本在线观看| 精品人妻一区二区三区免费| 视频在线观看色一区二区| 国产一区二区三区香蕉av| 福利一区二区视频在线| 日韩精品中文字幕亚洲| 冬爱琴音一区二区中文字幕| 好吊色免费在线观看视频| 五月婷婷欧美中文字幕| 在线观看视频国产你懂的| 国产又粗又猛又爽又黄的文字| 日韩成人高清免费在线| 欧美精品一区二区三区白虎| 日本高清二区视频久二区| 男人和女人草逼免费视频|