天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數(shù)學論文 >

向量優(yōu)化理論中的非線性標量化函數(shù)相關研究及應用

發(fā)布時間:2018-06-14 13:50

  本文選題:Gerstewitz泛函 + 最大嚴格單調(diào)函數(shù); 參考:《內(nèi)蒙古大學》2016年博士論文


【摘要】:向量優(yōu)化問題是指在一定的約束條件下極小化向量值函數(shù).向量優(yōu)化理論從產(chǎn)生、發(fā)展到逐漸成熟的過程中,與數(shù)學和經(jīng)濟學中的許多理論均有著密不可分的聯(lián)系.目前向量優(yōu)化理論和方法已形成了一個巨大體系,集中了很多不同層面和方向的研究分支以及大量豐富的研究內(nèi)容和成果.鑒于標量優(yōu)化理論與方法的成熟,將向量優(yōu)化問題轉(zhuǎn)化為標量優(yōu)化問題來求解的標量化方法,被證明是一種重要和有效的方法.線性標量化方法簡單易行,但同時因其對問題的凸性要求必不可少而使其應用受到了較大的限制.因此,為了處理實際中更多的非凸問題,不受到凸性限制的非線性標量化方法逐漸成為了研究的熱點.這其中最為關鍵與核心的是非線性標量化函數(shù)的選取.本文圍繞向量優(yōu)化理論中的非線性標量化函數(shù)的性質(zhì)分析及應用而展開,具體的工作分為以下的六個部分:第一,我們首先討論了最大嚴格單調(diào)函數(shù)這一非線性標量化函數(shù)的若干基本性質(zhì)并且給出該函數(shù)的對偶形式.然后提出了一般實拓撲向量空間中錐形鄰域的概念和一類新的向量值映射錐半連續(xù)性的定義.此外,通過使用Gerstewitz泛函和最大嚴格單調(diào)函數(shù)這兩個非線性標量化函數(shù),我們得到了對向量值映射的錐半連續(xù)性完整統(tǒng)一的刻畫.第二,利用兩個非線性標量化函數(shù),我們構(gòu)造出了一種半范數(shù)并且在一種等價關系下導出了一個相關的賦范線性空間.然后基于通常的嚴有效性和超有效性,文中提出了錐嚴有效性和錐超有效性的概念并分析了新舊概念之間的關系.最后,我們得到了錐嚴有效性的若干標量化刻畫,其中涉及到了相應標量化問題的適定性.第三,將賦范線性空間中的增廣對偶錐的概念推廣到了一般的局部凸空間中,在兩種情形下分別給出了廣義增廣對偶錐的定義.然后討論了它們的主要性質(zhì),并在合適的假設下建立了廣義增廣對偶錐非平凡的存在性條件.此外,在更一般的Hausdorff拓撲向量空間中,關于Gerstewitz泛函和最大嚴格單調(diào)函數(shù)的廣義增廣對偶錐的概念被提出.同時還給出了它們的一些性質(zhì)及保證其非平凡性的存在性定理.第四,本文利用基泛函和增廣對偶錐的概念,首次指出了范數(shù)、Gerstewitz泛函和面向距離函數(shù)等三種非線性標量化函數(shù)均具有某種和基泛函相同的特性.然后,在序錐存在有界基的假設下,通過借助增廣對偶錐的結(jié)構(gòu),建立了這三種次線性函數(shù)在序錐上的等價性.然而我們證明兩種超線性函數(shù)同范數(shù)之間卻并沒有類似的等價關系.更一般地,這三種次線性函數(shù)在負序錐外的等價性在本文中也被得到.第五,通過分別使用一種嚴格下水平集和最大嚴格單調(diào)函數(shù),文中建立了對向量值映射的恰當錐擬凸性的水平集和標量化刻畫.進一步,基于一般實拓撲向量空間中的兩種常見集合偏序關系,我們先后給出了對集值映射的恰當錐擬凸性的相應刻畫.我們使用的方法包括兩種不同形式的水平集和最大嚴格單調(diào)函數(shù).第六,在上述涉及到的一種常見的集合偏序關系下,我們提出了集值映射的標量錐擬凸概念,討論了它與各種錐凸性的關系.同時建立了集值映射的各種錐凸性通過實值單調(diào)增加凸函數(shù)表示的標量化復合法則.最后給出了利用Gerstewitz泛函表示的對集值映射的錐擬凸性的標量化刻畫.
[Abstract]:The vector optimization problem refers to the minimization of vector value functions under certain constraints. The theory of vector optimization has an inseparable connection with many theories in mathematics and economics. The theory and methods of vector optimization have formed a huge system and concentrated many different levels at present. It is proved to be an important and effective method to transform the vector optimization problem into the scalar optimization problem in view of the maturity of the scalar optimization theory and method, and the linear scalar method is simple and easy, but at the same time, the convexity of the problem is also due to its convexity. Therefore, in order to deal with more non convex problems in practice, the nonlinear scalar method, which is not restricted by convexity, has gradually become the focus of research. The key and core of this is the selection of nonlinear scalar function. This paper focuses on the nonlinearity of the vector optimization theory. The specific work of scalar function is divided into six parts: first, we first discuss some basic properties of the maximum strictly monotone function, a nonlinear scalar function, and give the dual form of the function. Then we propose a conical neighborhood of the general real topological vector space. In addition, by using the two nonlinear scalar functions of the Gerstewitz functional and the maximum strictly monotone function, we get a complete and unified description of the cone semicontinuous of the vector valued mapping. Second, we use two non linear scalar functions, we construct a kind of half. In this paper, a normed linear space is derived under an equivalent relation. Then based on the usual strict validity and superefficiency, the concept of conical validity and cone superefficiency is proposed and the relationship between the new and old concepts is analyzed. Finally, we get some scalar characterization of the conical validity. Third, the concept of the augmented dual cone in normed linear space is generalized to the general local convex space, and the generalized augmented dual cones are defined in two cases. Then the main properties of the generalized augmented dual cones are discussed, and the generalized augmented dual cone nonflat is established under the hypothetical assumption. In addition, in the more general Hausdorff topological vector space, the concept of generalized augmented dual cones for the Gerstewitz functional and the maximum strictly monotone function is proposed. Some properties of them and the existence theorems to guarantee their nontrivial properties are given. Fourth, this paper uses the basic functional and the augmented dual cone. The concept, for the first time points out the norm, the three nonlinear scalar functions, such as the Gerstewitz functional and the distance oriented function, have the same characteristics as the basic functional. Then, under the assumption that the order cone has a bounded basis, the equivalence of the three sub linear functions on the order cone is established by means of the structure of the augmented dual cone. However, we prove that the equivalence of the three sub linear functions on the order cone is established. There is no similar equivalence relation between the two superlinear functions and the norm. In general, the equivalence of the three sub linear functions outside the negative order cone is also obtained. Fifth, by using a strict lower level set and the maximum strictly monotone function, the level of the proper conical quasi convexity for the vector value mapping is established in this paper. Set and scalar characterization. Further, based on the two common set partial order relations in the general real topological vector space, we have given the corresponding characterization of the proper cone quasilateness for set valued mappings. The methods we use include two different forms of level set and the maximum strict single tone function. Sixth, a kind of ordinary one is involved in the above. Under the set partial order relation, we propose a scalar cone quasi convex concept of set valued mapping, and discuss the relation between it and various conical convexity. At the same time, we establish a scalar compound rule that the conic convexity of a set value mapping is monotonically increased by the real value. Finally, the cone quasi cones of the set value mapping using the Gerstewitz function are given. A scalar characterization of convexity.
【學位授予單位】:內(nèi)蒙古大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:O224

【相似文獻】

相關期刊論文 前10條

1 張炳江;周琳;王小妮;;基于標量化Ⅲ的類別數(shù)據(jù)分析[J];北京信息科技大學學報(自然科學版);2009年03期

2 徐徐;方向凸集的有效點集之標量化定理[J];溫州師范學院學報(自然科學版);2002年06期

3 戎衛(wèi)東;;線性拓撲空間中向量極值問題ε-有效解的性質(zhì)及標量化[J];內(nèi)蒙古大學學報(自然科學版);1992年03期

4 任創(chuàng)業(yè);薛小維;;在集優(yōu)化意義下的集值映射的非線性標量化(英文)[J];四川大學學報(自然科學版);2013年03期

5 陳光亞;多目標最優(yōu)化問題有效點的性質(zhì)及標量化[J];應用數(shù)學學報;1979年03期

6 范志強;肖剛;;向量映射的非線性標量化函數(shù)的性質(zhì)及應用[J];西南師范大學學報(自然科學版);2013年01期

7 余國林;;生成錐內(nèi)部凸-錐-類凸集值優(yōu)化問題的標量化和鞍點[J];應用泛函分析學報;2012年02期

8 朱鳳娟;余國林;;廣義錐-s次類凸向量優(yōu)化的標量化和鞍點定理[J];大學數(shù)學;2009年04期

9 姜明啟;多目標最優(yōu)化問題有效點的分離方法[J];武漢水利電力大學學報;1993年01期

10 孟旭東;龔循華;;向量均衡問題的標量化[J];濟南大學學報(自然科學版);2014年04期

相關會議論文 前2條

1 趙春英;戎衛(wèi)東;;ε-強(嚴)有效點集的標量化[A];中國運籌學會第八屆學術交流會論文集[C];2006年

2 陳瓊;;量化、質(zhì)化綜合評定多種損傷[A];全國第七次法醫(yī)學術交流會論文摘要集[C];2004年

相關重要報紙文章 前1條

1 本報記者 高向東 通訊員 周建國;黨性“體檢” 指標量化[N];中國石油報;2014年

相關博士學位論文 前1條

1 李飛;向量優(yōu)化理論中的非線性標量化函數(shù)相關研究及應用[D];內(nèi)蒙古大學;2016年

相關碩士學位論文 前5條

1 李麗麗;向量平衡問題的非線性標量化及其穩(wěn)定性[D];重慶大學;2015年

2 吳凱紅;非線性標量化函數(shù)和幾類向量均衡問題及其溝函數(shù)[D];天津工業(yè)大學;2007年

3 任創(chuàng)業(yè);集值映射的非凸標量化表示及其在交通網(wǎng)絡中的應用[D];重慶大學;2014年

4 郝媛;Gerstewitz's泛函和非凸集有效點的標量化[D];蘇州大學;2007年

5 羅彬;利用標量化函數(shù)討論優(yōu)化問題的像空間分析[D];重慶大學;2014年

,

本文編號:2017610

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/2017610.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權申明:資料由用戶c3230***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com
亚洲第一区二区三区女厕偷拍| 91国内视频一区二区三区| 欧美日韩国产另类一区二区| 欧美一区二区不卡专区| 国产超碰在线观看免费| 亚洲中文字幕免费人妻| 亚洲国产色婷婷久久精品| 午夜福利在线观看免费| 国内外免费在线激情视频| 精品欧美在线观看国产| 国产麻豆一线二线三线| 中文字幕日韩精品人一妻| 国产精品欧美一区二区三区不卡 | 亚洲精品欧美精品日韩精品| 国产精品色热综合在线| 日韩色婷婷综合在线观看| 国产不卡一区二区四区| 中文字幕高清不卡一区| 欧美午夜一区二区福利视频| 好吊妞在线免费观看视频| 国内午夜精品视频在线观看| 欧美日韩免费观看视频| 五月天丁香婷婷狠狠爱| 国产欧美日韩在线精品一二区 | 国产麻豆成人精品区在线观看 | 在线观看免费无遮挡大尺度视频 | 91精品国自产拍老熟女露脸 | 久久青青草原中文字幕| 午夜福利在线观看免费| 性欧美唯美尤物另类视频| 国产肥妇一区二区熟女精品 | 狠狠干狠狠操亚洲综合| 日韩欧美综合在线播放| 欧美激情视频一区二区三区| 国产精品欧美在线观看| 久久女同精品一区二区| 国产精品不卡一区二区三区四区| 国产又大又猛又粗又长又爽| 日韩免费午夜福利视频| 中文日韩精品视频在线| 亚洲成人久久精品国产|