天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當前位置:主頁 > 科技論文 > 數(shù)學論文 >

算子代數(shù)上的中心化子和Lie可導映射

發(fā)布時間:2018-06-07 11:49

  本文選題:中心化子 + 素環(huán); 參考:《太原理工大學》2017年碩士論文


【摘要】:左(右)中心化子、中心化子及Lie導子是算子代數(shù)與算子理論研究中非常重要的內(nèi)容,受到了許多學者的廣泛關(guān)注.本文主要刻畫三角環(huán),素環(huán)和von Neumann代數(shù)上在某點是中心化子的可加映射,探討可加映射成為中心化子的條件,進而得到三角環(huán),素環(huán)和von Neumann代數(shù)上中心化子的新等價刻畫.同時本文刻畫B(X)在值域不稠或非單射算子Lie可導的可加映射.全文結(jié)構(gòu)如下:第一章簡要介紹所研究問題的背景,本文的主要內(nèi)容以及證明過程中所需的結(jié)論和定義.第二章刻畫了三角環(huán)、素環(huán)、von Neumann代數(shù)上的中心化子,主要結(jié)論如下:1.三角環(huán)R上中心化子的刻畫.設(shè)T = Tri(A,M,B)為三角環(huán),T是任意但固定的元.假設(shè)對任意的4 ∈ A,B ∈ B,存在正整數(shù)n1,n2使得n1I1-A,n2I2-B是可逆的,則可加映射Φ:T → T對滿足AB=Z的AB∈ T,有Φ(AB)= Φ(A)B=AΦ B 當且僅當 Φ(AB)= Φ(4)B=AΦ()VA B ∈ T.2.素環(huán)上中心化子的刻畫.設(shè)R是包含非平凡冪等元P且含單位元I的素環(huán),假設(shè)對(?)A11∈ 1,存在整數(shù)n使得nP1-A11在R11中可逆,則可加映射Φ:R→R在Z ∈ R,PZ = Z 點是中心化子,即 Φ(AB)= Φ(A)B = AΦ(B),VA,B ∈ R,Z 當且僅當 Φ(AB)= Φ(A)B=AΦ()(?)A,B ∈ R3.von Neumann代數(shù)上中心化子的刻畫.設(shè)M是沒有I1型中心直和項的von Neumann代數(shù),設(shè)Z ∈ 使得(I-P = 0,其中P ∈ 滿足P = I,P = 0.則可加映射Φ:→ 滿足Φ(AB)= Φ(4)B=AΦ()VA,B∈M,AB = Z當且僅當Φ(AB)= Φ(A)B = AΦ(B),VA,B ∈ M.第三章刻畫了 B(X)上的Lie導子.主要結(jié)論如下:設(shè)X是維數(shù)至少是2的Banach空間,δ:B(X)→ B(X)是可加映射.本文證明,若存在非平凡冪等算子P ∈ B(X)使得PΩ=Ω,則δ在Ω Lie可導,即δ([A,B])=[δ(A],B]+[A,δ(B)],(?)A,B ∈ B(X),ABΩ 當且僅當存在導子 T:B(X)→ B(X)和可加映射f:B(X)→F,使得 δ(A)= T(A)+f(A)I,(?)A∈B(X),其中 f([A,B])= 0,VA,B∈B(X),AB = Ω特別地,若X = H是Hilbert空間,Ω ∈ B(H)使得ker(Ω)≠ 0或ran(Ω)≠ H,則δ在Ω Lie可導當且僅當δ有上述分解式.
[Abstract]:Left (right) centroids, centroids and Lie derivations are very important contents in the study of operator algebra and operator theory, which have been paid more and more attention by many scholars. In this paper, we mainly characterize the additive mappings on triangular rings, prime rings and von Neumann algebras which are centralizers at a certain point. We discuss the conditions under which additive mappings become centralizers, and then obtain new equivalent characterizations of centralizers on triangular rings, prime rings and von Neumann algebras. At the same time, in this paper, we characterize the additive mappings of the Lie derivative of BX) in the range of indense or non-monojective operators. The structure of the paper is as follows: chapter 1 briefly introduces the background of the research, the main contents of this paper and the necessary conclusions and definitions in the process of proof. In chapter 2, we characterize the centroids of triangular rings, prime rings and von Neumann algebras. The main results are as follows: 1. Characterization of centroids over triangular rings R. Let T = Trigna Agni M B) be a triangulated annulus T is an arbitrary but fixed element. Assuming that for any 4 鈭,

本文編號:1991069

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/1991069.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶8a333***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com