2-連通圖的修正的彩虹頂點連通數(shù)
發(fā)布時間:2018-05-11 06:34
本文選題:修正的彩虹頂點連通數(shù) + 彩虹頂點著色。 參考:《陜西師范大學(xué)學(xué)報(自然科學(xué)版)》2017年06期
【摘要】:路P稱為修正的頂點彩虹路,如果P中所有的頂點著不同的顏色或者除端點外其余頂點著不同于端點的顏色。圖G稱為是修正的彩虹頂點連通的,如果對于G的任意兩個頂點u和v,G都有一條修正的彩虹頂點u-v路。使圖G是修正的彩虹頂點連通圖的最小顏色數(shù)目k稱為圖G的修正的彩虹連通數(shù),記做rvc*(G)。給出了2-連通圖G的修正的彩虹頂點連通數(shù)的一個上界,即rvc*(G)≤|n/2|+1。
[Abstract]:Path P is called the modified Vertex Rainbow Road if all vertices in P have different colors or the vertices are different from the endpoint except the endpoint. A graph G is called a modified rainbow vertex connected if for any two vertices u and VG of G there is a modified rainbow vertex u-v path. Let G be the minimum number of colors of a modified rainbow vertex connected graph k is the modified rainbow connectivity number of graph G. In this paper, we give an upper bound of the connected number of the modified rainbow vertices of a 2-connected graph G, that is, rvcn (G) 鈮,
本文編號:1872821
本文鏈接:http://sikaile.net/kejilunwen/yysx/1872821.html
最近更新
教材專著