具有變號非線性項的二階三點邊值問題的正解(英文)
本文選題:三點邊值問題 + 拓撲度方法。 參考:《數(shù)學(xué)進展》2017年05期
【摘要】:利用拓撲度方法,結(jié)合分析邊值條件,研究了一類具有變號非線性項的二階三點邊值問題的正解的存在性.
[Abstract]:The existence of positive solutions for a class of second-order three-point boundary value problems with a variable sign nonlinear term is studied by using the topological degree method and the analytical boundary value conditions.
【作者單位】: 山東科技大學(xué)數(shù)學(xué)系;
【基金】:supported by NSFC(No.11571207) the Research Award Fund for Outstanding Young Scientists of Shandong Province(No.BS2012SF022) the Project of Shandong Province Higher Educational Science and Technology Program(No.J11LA07)
【分類號】:O175.8
【相似文獻】
相關(guān)期刊論文 前10條
1 呂穎;;一類具有變號非線性項的Schr銉dinger方程的解[J];西南大學(xué)學(xué)報(自然科學(xué)版);2013年05期
2 張文沂,田秀第;廣義變號函數(shù)及在實際中的應(yīng)用[J];天津城市建設(shè)學(xué)院學(xué)報;1995年03期
3 陳迪榮;周期變號減少核確定的完全樣條與最優(yōu)取樣點的唯一性[J];數(shù)學(xué)學(xué)報;1995年03期
4 李成;劉立山;;具有變號非線性項的奇異二階三點邊值問題的三個非零正解[J];數(shù)學(xué)物理學(xué)報;2008年03期
5 王靜;王剛;;一類變號二階三點邊值問題正解的存在性[J];信陽師范學(xué)院學(xué)報(自然科學(xué)版);2013年02期
6 李永青,劉兆理;一個帶限制的橢圓特征問題的多解和變號解[J];中國科學(xué)(A輯);2000年11期
7 金云娟;;無界域上帶限制的非線性橢圓特征問題的多解和變號解[J];麗水學(xué)院學(xué)報;2008年05期
8 姚曉潔;;一類線性項前系數(shù)可變號的高階中立型泛函微分方程的周期解[J];柳州師專學(xué)報;2011年05期
9 劉進生;喬靜;;一類二階三點邊值問題變號解的存在性[J];太原理工大學(xué)學(xué)報;2007年04期
10 鐘軍;共正逼近的特征性及強唯一性[J];計算數(shù)學(xué);1988年01期
相關(guān)博士學(xué)位論文 前8條
1 龍薇;幾類非線性橢圓型方程的多峰解[D];華中師范大學(xué);2015年
2 岳曉蕊;與波色-愛因斯坦凝聚態(tài)相關(guān)的方程組的解[D];清華大學(xué);2014年
3 何秀梅;關(guān)于幾類非線性問題的單號解和變號解研究[D];云南大學(xué);2016年
4 帥偉;含有非局部項橢圓型方程變號解的存在性及其漸近行為[D];華中師范大學(xué);2016年
5 王慶芳;幾類非線性橢圓型方程(組)的研究[D];華中師范大學(xué);2016年
6 李宇華;微分方程的多解與變號解[D];山西大學(xué);2011年
7 吳元澤;幾類橢圓方程變號解的存在性研究[D];蘇州大學(xué);2013年
8 鄧小青;具變號位勢的二階離散Hamilton系統(tǒng)的周期解和同宿軌[D];湖南大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 代曉冉;幾類變號位勢哈密頓橢圓系統(tǒng)解的存在性[D];華僑大學(xué);2016年
2 高敏;一類四階非線性橢圓邊值問題的無窮多個變號解[D];陜西師范大學(xué);2016年
3 王江峰;一類擬線性橢圓方程的變號解[D];首都師范大學(xué);2008年
4 洪明理;R~N上某些非線性橢圓偏微分方程的多重變號解[D];福建師范大學(xué);2006年
5 張黎黎;非線性項可變號的奇異微分方程的正解[D];山東師范大學(xué);2007年
6 張寧;基爾霍夫型問題的多重變號解[D];曲阜師范大學(xué);2013年
7 周見文;一類四階非線性橢圓問題的變號解[D];云南師范大學(xué);2007年
8 陳凌驊;變號臨界點與三明治對定理[D];清華大學(xué);2012年
9 李鳳平;等時系統(tǒng)在共振條件下的周期解[D];首都師范大學(xué);2009年
10 楊素環(huán);一類超線性薛定諤方程的正負解和變號解[D];曲阜師范大學(xué);2010年
,本文編號:1850855
本文鏈接:http://sikaile.net/kejilunwen/yysx/1850855.html