含參數(shù)的四階周期邊值問題的正解
發(fā)布時(shí)間:2018-04-19 06:53
本文選題:參數(shù) + 四階周期邊值問題。 參考:《蘭州理工大學(xué)》2017年碩士論文
【摘要】:四階微分方程邊值問題因其在工程學(xué)、物理學(xué)等眾多領(lǐng)域中的廣泛應(yīng)用而一直深受追捧.近年來,學(xué)者們發(fā)現(xiàn)帶有周期邊值條件的四階常微分方程邊值問題更具有現(xiàn)實(shí)指導(dǎo)意義,因此,這類問題便成為了大家熱議的焦點(diǎn).本文研究如下四階常微分方程周期邊值問題其中,p≠0,4a+16p~41,f∈(C_[0,2π]×[0,+∞),[0,+∞)),λ0為參數(shù).第一章介紹了課題的研究背景及一些所需的預(yù)備知識.第二章利用Guo-Krasnoselskii不動點(diǎn)定理討論了上述問題一個(gè)或兩個(gè)正解的存在性.第三章利用Leggett-Williams不動點(diǎn)定理討論了上述問題的多解性.
[Abstract]:The boundary value problem of fourth order differential equation is widely used in many fields such as engineering, physics and so on.In recent years, scholars have found that the boundary value problems of fourth-order ordinary differential equations with periodic boundary conditions are more practical and instructive, so this kind of problems have become the focus of heated discussion.In this paper, the following periodic boundary value problems for fourth-order ordinary differential equations are studied, where p 鈮,
本文編號:1772036
本文鏈接:http://sikaile.net/kejilunwen/yysx/1772036.html
最近更新
教材專著