天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于馬爾科夫機(jī)制轉(zhuǎn)換模型的行業(yè)相關(guān)性研究及投資組合建議

發(fā)布時(shí)間:2018-03-28 20:00

  本文選題:波動(dòng)性 切入點(diǎn):相關(guān)性 出處:《首都經(jīng)濟(jì)貿(mào)易大學(xué)》2017年碩士論文


【摘要】:近些年來,隨著股票市場(chǎng)不斷發(fā)展,眾多關(guān)于股市波動(dòng)性和相關(guān)性以及關(guān)于金融資產(chǎn)投資組合最優(yōu)選擇的理論也逐漸得到完善與改進(jìn)。為了研究股票市場(chǎng)波動(dòng)性及相關(guān)性的問題,本文選取了上海證券交易所公布的上證行業(yè)指數(shù)數(shù)據(jù)作為研究對(duì)象,分別假定殘差擾動(dòng)項(xiàng)服從正態(tài)分布、廣義誤差分布、偏態(tài)廣義誤差分布,對(duì)數(shù)據(jù)建立GARCH(1,1)模型。隨后,文章在GARCH模型中引入馬爾科夫機(jī)制轉(zhuǎn)換過程,建立兩狀態(tài)MS-GARCH模型,通過模型估計(jì)結(jié)果顯示上證行業(yè)指數(shù)存在著低波動(dòng)和高波動(dòng)兩種狀態(tài),且處于低波動(dòng)的期望持續(xù)時(shí)間較長(zhǎng)。通過模型的對(duì)比發(fā)現(xiàn),GARCH模型殘差擾動(dòng)項(xiàng)服從偏態(tài)廣義誤差分布的擬合效果比其他分布的擬合效果好;MS-GARCH模型對(duì)波動(dòng)性的描述比GARCH模型更好。之后,對(duì)上證行業(yè)指數(shù)正常狀態(tài)、低波動(dòng)狀態(tài)、高波動(dòng)狀態(tài)分別進(jìn)行了動(dòng)態(tài)相關(guān)系數(shù)的計(jì)算,以上證能源為例,結(jié)果表明上證能源與其他九個(gè)行業(yè)呈現(xiàn)較高的正相關(guān)性,而且在2015年至2016年之間的正相關(guān)性最高;經(jīng)過狀態(tài)轉(zhuǎn)換后的兩狀態(tài)相關(guān)性有著明顯降低。最后對(duì)相關(guān)性最高時(shí)間段內(nèi)的數(shù)據(jù)建立均值-方差模型,通過計(jì)算得到最優(yōu)前沿,發(fā)現(xiàn)通過增減上證電信的投資比例能直接影響到投資組合的收益。綜上所述,我國(guó)的上證行業(yè)指數(shù)具有高波動(dòng)性和高相關(guān)性的特點(diǎn),因此在做投資組合最優(yōu)選擇時(shí)應(yīng)密切關(guān)注收益率變化和股票市場(chǎng)的相關(guān)信息。
[Abstract]:In recent years, with the development of the stock market, Many theories about volatility and correlation of stock market and optimal choice of financial asset portfolio have been perfected and improved gradually in order to study the problem of volatility and correlation in stock market. In this paper, the Shanghai Stock Exchange industry index data published by the Shanghai Stock Exchange are selected as the research objects. The residual disturbance terms are assumed to follow normal distribution, generalized error distribution and skewness generalized error distribution respectively. In this paper, the Markov mechanism transformation process is introduced into the GARCH model, and a two-state MS-GARCH model is established. The results of the model estimation show that there are two states of low volatility and high volatility in the index of Shanghai Stock Exchange. Through the comparison of the models, it is found that the fitting effect of GARCH model is better than that of other distributions, and that the MS-GARCH model describes the volatility better than the other distributions. The GARCH model is better. After that, The dynamic correlation coefficient is calculated for the normal state, low fluctuation state and high fluctuation state of Shanghai Stock Exchange industry index. Taking Shanghai Stock Exchange Energy as an example, the results show that Shanghai Stock Exchange Energy has a high positive correlation with other nine industries. Moreover, the positive correlation between 2015 and 2016 is the highest; after the state transition, the correlation between the two states is significantly reduced. Finally, the mean-variance model is established for the data in the period of the highest correlation, and the optimal frontier is obtained by calculation. It is found that the increase or decrease of the investment ratio of Shanghai Telecom can directly affect the return of the investment portfolio. To sum up, the Shanghai Stock Exchange industry index in China has the characteristics of high volatility and high correlation. Therefore, we should pay close attention to the change of return rate and the relevant information of stock market.
【學(xué)位授予單位】:首都經(jīng)濟(jì)貿(mào)易大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:F224;F832.51

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 胡婧昀;;上證指數(shù)的波動(dòng)性分析及其動(dòng)態(tài)VaR計(jì)算[J];赤峰學(xué)院學(xué)報(bào)(自然科學(xué)版);2015年22期

2 張幫正;魏宇;;基于R_Vine Copula方法的上證行業(yè)指數(shù)相關(guān)性研究[J];北京理工大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版);2015年03期

3 郭文英;;上證行業(yè)指數(shù)間的相關(guān)性研究及應(yīng)用[J];金融理論與實(shí)踐;2013年03期

4 段瓊潔;單薇;;基于Copula-GARCH模型的上證股指行業(yè)板塊相關(guān)性研究[J];河南科學(xué);2011年11期

5 涂莉;;上證指數(shù)波動(dòng)性實(shí)證分析[J];東方企業(yè)文化;2011年04期

6 朱鈞鈞;謝識(shí)予;朱弘鑫;盧書泉;;基于狀態(tài)轉(zhuǎn)換的貨幣危機(jī)預(yù)警模型——時(shí)變概率馬爾可夫轉(zhuǎn)換模型的Griddy-Gibbs取樣法和應(yīng)用[J];數(shù)量經(jīng)濟(jì)技術(shù)經(jīng)濟(jì)研究;2010年09期

7 江孝感;萬蔚;;馬爾科夫狀態(tài)轉(zhuǎn)換GARCH模型的波動(dòng)持續(xù)性研究——對(duì)估計(jì)方法的探討[J];數(shù)理統(tǒng)計(jì)與管理;2009年04期

8 唐俊;丁立剛;;負(fù)債下摩擦市場(chǎng)不允許賣空時(shí)的最優(yōu)投資組合[J];內(nèi)蒙古大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年05期

9 蔣卉;劉瑞元;;協(xié)差陣奇異時(shí)的最優(yōu)投資組合[J];青海師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年01期

10 沈秋英;牛淑芬;孫小玲;;離散單因素投資組合模型的對(duì)偶算法(英文)[J];運(yùn)籌學(xué)學(xué)報(bào);2006年04期

,

本文編號(hào):1677825

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/yysx/1677825.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d2ea8***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com