有序決策樹在SOCA下的擴(kuò)展及模糊有序決策樹的研究
發(fā)布時(shí)間:2018-01-17 19:33
本文關(guān)鍵詞:有序決策樹在SOCA下的擴(kuò)展及模糊有序決策樹的研究 出處:《河北大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 決策樹 有序決策樹 模糊有序決策樹 有序互信息 單調(diào)有序分類
【摘要】:簡(jiǎn)單有序分類方法(SOCA:Simple Ordinal Classification Approach)是Frank和Hall提出的通用方法,任何能給出樣例概率估計(jì)的分類算法,如C4.5算法、K-近鄰算法(KNN:k-Nearest Neighbor)和極限學(xué)習(xí)機(jī)(ELM:Extreme Learning Machine)算法等都能應(yīng)用該方法來解決有序分類問題。但在SOCA中,只有決策屬性的序信息被用于分類,而沒有考慮條件屬性的序信息。但是我們的實(shí)驗(yàn)研究發(fā)現(xiàn)條件屬性的序信息能夠改進(jìn)分類算法的泛化能力。針對(duì)上述問題,本文將SOCA推廣到有序決策樹上,提出了一種改進(jìn)的有序分類算法,該算法同時(shí)考慮了條件屬性和決策屬性的序信息。另外,本文還分析了SOCA對(duì)基本分類算法(如C4.5算法、K-近鄰算法和ELM等)的敏感性。另外,我們還將有序決策樹推廣到了模糊環(huán)境,提出了一種模糊有序分類算法。并對(duì)本文提出的算法的性能進(jìn)行了實(shí)驗(yàn)分析,實(shí)驗(yàn)結(jié)果顯示本文提出的算法是行之有效的。
[Abstract]:Simple Ordinal Classification (SOCA). Is a general method proposed by Frank and Hall. Any classification algorithm, such as C4.5 algorithm, which can give sample probability estimation. KNN: k-nearest neighbor (KNN: k-nearest neighbor) and Ultimate Learning Machine (ELM: extreme Learning Machine). The algorithm can be used to solve the problem of ordered classification, but in SOCA. Only the order information of decision attributes is used for classification, but the order information of conditional attributes is not considered. However, our experimental research shows that the order information of conditional attributes can improve the generalization ability of classification algorithms. In this paper, SOCA is extended to an ordered decision tree, and an improved ordered classification algorithm is proposed, which takes into account the order information of both conditional attributes and decision attributes. In this paper, the sensitivity of SOCA to basic classification algorithms (such as C4.5 algorithm, K- nearest neighbor algorithm and ELM algorithm) is also analyzed. In addition, we extend the ordered decision tree to fuzzy environment. A fuzzy ordered classification algorithm is proposed, and the performance of the proposed algorithm is analyzed experimentally. The experimental results show that the proposed algorithm is effective.
【學(xué)位授予單位】:河北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:O225
【參考文獻(xiàn)】
相關(guān)期刊論文 前5條
1 王中興;莫亞妮;劉勇軍;;模糊數(shù)排序的一種新方法[J];重慶工學(xué)院學(xué)報(bào)(自然科學(xué)版);2008年08期
2 王熙照,謝競(jìng)博;基于屬性間交互信息的模糊ID3算法的擴(kuò)展(英文)[J];復(fù)旦學(xué)報(bào)(自然科學(xué)版);2004年05期
3 ;Information entropy for ordinal classification[J];Science China(Information Sciences);2010年06期
4 趙娟;劉瓊蓀;;一種基于模糊數(shù)中心的模糊數(shù)排序方法[J];模糊系統(tǒng)與數(shù)學(xué);2008年02期
5 王秀容;張俊容;;一種新的模糊數(shù)排序方法[J];統(tǒng)計(jì)與決策;2012年08期
,本文編號(hào):1437686
本文鏈接:http://sikaile.net/kejilunwen/yysx/1437686.html
最近更新
教材專著