稀疏子空間聚類算法及其在運(yùn)動分割中的應(yīng)用研究
文內(nèi)圖片:
圖片說明:無向圖G
[Abstract]:Nowadays, people are not satisfied with just playing multimedia information, but turn to video object-based access, retrieval and operation, so video-based motion segmentation technology has become the focus of research. Motion segmentation is the cornerstone of object coding, video retrieval and multimedia interaction, which separates objects with different motion in video. The traditional motion segmentation algorithm adopts moving target detection and target tracking. When using frame difference method and optical flow method to detect moving target, it is easy to be affected by noise. Target tracking also involves the occlusion, distortion and deformation of the target, so it is difficult to get the ideal effect of motion segmentation in complex scene. From the point of view of the problem, sparse subspace clustering algorithm is used to avoid the problems encountered in motion detection and target tracking, so as to realize the motion segmentation in complex scenes. The feature point trajectory based on the same motion is on the same linear manifold, so the sparse subspace clustering algorithm can be used to cluster the feature point trajectory to realize motion segmentation. When dealing with high-dimensional data, sparse subspace clustering algorithm can segment high-dimensional data into its own low-dimensional subspace, reveal the local proton space of high-dimensional data, and the algorithm can deal with the influence of singularity and noise on clustering at the same time. aiming at the research of sparse subspace algorithm, this paper does the following work: (1) by comparing k-means algorithm, the adaptive spectral clustering algorithm is deeply studied. Because the sparse subspace clustering algorithm is based on spectral clustering, the related basic and theoretical knowledge of spectral clustering is deeply studied, and the research results and application status of spectral clustering are analyzed. Aiming at the disadvantage that spectral clustering needs to manually input the number of clustering, this paper calculates the characteristic gap of matrix according to the perturbation theory of matrix, so as to realize the automatic determination of clustering number by clustering algorithm. In order to prove that spectral clustering algorithm can deal with arbitrary sample shape data sets, and does not fall into local optimization, this paper selects various shapes of sample sets to carry out experiments, and uses k-means algorithm to deal with these sample sets. Through experimental comparison, the advantages of adaptive spectral clustering algorithm in dealing with sample sets are found. (2) mixed least square regression sparse subspace clustering algorithm is proposed. In order to solve the problem of how to construct the similarity matrix which truly and reasonably reflects the dataset, the similarity matrix should be sparse between classes and uniform within classes, so as to ensure that the similarity of data points belonging to the same class is the largest and the similarity of data points belonging to different classes is the smallest. For the sample set, there are all kinds of noise points, singular sample points and isolated points. In this paper, the data item matrix is used to deal with the influence of noise. By analyzing the sparse subspace clustering, it focuses on the maximum sparsity of each data representation coefficient, and lacks the description of the global structure of the data set. The low rank subspace clustering algorithm ensures the structural correlation of the same kind of data, but it is not sparse enough. In this paper, we decide to introduce least square regression into sparse subspace clustering algorithm, so as to ensure that the similarity matrix of data has both sparsity and grouping effect, and the performance of the improved algorithm is verified by data set. (3) the application of improved sparse subspace clustering algorithm in motion segmentation is studied. The sparse subspace clustering algorithm is applied to video object processing, and the motion segmentation model is established and the motion segmentation experiment is carried out. the experimental results show that the improved algorithm improves the accuracy of motion segmentation under the condition of ensuring the time complexity.
【學(xué)位授予單位】:重慶理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 楊歡;劉小玲;;虛擬現(xiàn)實系統(tǒng)綜述[J];軟件導(dǎo)刊;2016年04期
2 劉建華;;基于隱空間的低秩稀疏子空間聚類[J];西北師范大學(xué)學(xué)報(自然科學(xué)版);2015年03期
3 王衛(wèi)衛(wèi);李小平;馮象初;王斯琪;;稀疏子空間聚類綜述[J];自動化學(xué)報;2015年08期
4 許凱;吳小俊;;基于重建系數(shù)的子空間聚類融合算法[J];計算機(jī)應(yīng)用研究;2015年11期
5 賈璦瑋;;基于劃分的聚類算法研究綜述[J];電子設(shè)計工程;2014年23期
6 歐陽佩佩;趙志剛;劉桂峰;;一種改進(jìn)的稀疏子空間聚類算法[J];青島大學(xué)學(xué)報(自然科學(xué)版);2014年03期
7 姚剛;楊敏;;稀疏子空間聚類的懲罰參數(shù)自調(diào)整交替方向法[J];計算機(jī)技術(shù)與發(fā)展;2014年11期
8 高文;朱明;賀柏根;吳笑天;;目標(biāo)跟蹤技術(shù)綜述[J];中國光學(xué);2014年03期
9 張權(quán);胡玉蘭;;譜聚類圖像分割算法研究[J];沈陽理工大學(xué)學(xué)報;2012年06期
10 王駿;王士同;鄧趙紅;;聚類分析研究中的若干問題[J];控制與決策;2012年03期
相關(guān)博士學(xué)位論文 前2條
1 陳黎飛;高維數(shù)據(jù)的聚類方法研究與應(yīng)用[D];廈門大學(xué);2008年
2 姜志俠;數(shù)學(xué)規(guī)劃中的原始對偶內(nèi)點方法[D];吉林大學(xué);2008年
相關(guān)碩士學(xué)位論文 前10條
1 謝浪雄;稀疏表示理論及其應(yīng)用研究[D];廣東工業(yè)大學(xué);2015年
2 楊陽;數(shù)據(jù)挖掘K-means聚類算法的研究[D];湖南師范大學(xué);2015年
3 管春苗;基于機(jī)器視覺的運(yùn)動目標(biāo)軌跡跟蹤技術(shù)研究[D];沈陽理工大學(xué);2015年
4 周成舉;基于約束稀疏表達(dá)的視頻人臉聚類[D];天津大學(xué);2014年
5 王云峰;視頻對象分割技術(shù)研究[D];廣東工業(yè)大學(xué);2014年
6 張亞平;譜聚類算法及其應(yīng)用研究[D];中北大學(xué);2014年
7 陸洪濤;偏最小二乘回歸數(shù)學(xué)模型及其算法研究[D];華北電力大學(xué);2014年
8 黎蕾;求解凸最優(yōu)化問題的近似交替方向法[D];重慶師范大學(xué);2013年
9 萬海霞;圖與混合圖的特征值問題研究[D];鄭州大學(xué);2013年
10 羅懷金;基于近鄰路徑的自適應(yīng)尺度譜聚類算法研究[D];哈爾濱工程大學(xué);2012年
,本文編號:2511109
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2511109.html