面向用戶(hù)體驗(yàn)的智能應(yīng)用使用模式與優(yōu)化的研究
[Abstract]:Nowadays, the mobile Internet is developing rapidly. At the same time, the era of big data has come quietly. "Mobile Internet" and "big data" have become the hottest topics in the current Internet field. Among these, the most direct relationship with the mobile Internet is the mobile APP, and facing the mass of APP, how to choose the right APP, is a headache for ordinary users. In this case, it is important to help users choose the right APP, in large amounts of data to improve the user's experience and save users the cost of use. Based on this situation, this article will from the traffic use aspect, combines the user's use preference, recommends to the user the APP. which conforms to its own usage habit and reduces the traffic use. Firstly, this paper studies how to build the data analysis platform, and realizes the Hadoop analysis platform based on Ambari. On this basis, it classifies and processes the target data set, and then makes some correlative analysis to the data. Secondly, based on the traffic consumption and popularity of APP, this paper establishes the APP recommendation model, and studies the APP recommendation model based on user-related usage preferences. According to the established recommendation model, the users' preference is analyzed, and the similar APP, with less traffic and higher popularity is recommended for users to improve the user's experience. In addition, both users and APP, need to consider the problem of time periods, that is, users prefer to use a certain kind of APP period and APP is used most frequently. Finally, according to the data sets related to the mobile Internet users, this paper validates the APP recommendation model mentioned above. The results show that in the case of satisfying the user's usage preference, The APP recommended for the user can cost less traffic or the recommended APP has a higher popularity than the original APP used by the user. In this way, the user experience has been improved.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:TP311.56
【參考文獻(xiàn)】
相關(guān)期刊論文 前2條
1 唐家琳;;移動(dòng)互聯(lián)網(wǎng)用戶(hù)行為比較分析[J];西安郵電大學(xué)學(xué)報(bào);2013年05期
2 陳克寒;韓盼盼;吳健;;基于用戶(hù)聚類(lèi)的異構(gòu)社交網(wǎng)絡(luò)推薦算法[J];計(jì)算機(jī)學(xué)報(bào);2013年02期
相關(guān)會(huì)議論文 前1條
1 馮銘;王保進(jìn);蔡建宇;;基于云計(jì)算的可重構(gòu)移動(dòng)互聯(lián)網(wǎng)用戶(hù)行為分析系統(tǒng)的設(shè)計(jì)[A];CCF NCSC 2011——第二屆中國(guó)計(jì)算機(jī)學(xué)會(huì)服務(wù)計(jì)算學(xué)術(shù)會(huì)議論文集[C];2011年
相關(guān)博士學(xué)位論文 前2條
1 祝恒書(shū);面向移動(dòng)商務(wù)的數(shù)據(jù)挖掘方法及應(yīng)用研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
2 寶騰飛;面向移動(dòng)用戶(hù)數(shù)據(jù)的情境識(shí)別與挖掘[D];中國(guó)科學(xué)技術(shù)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前9條
1 趙志勇;移動(dòng)Hadoop集群監(jiān)控系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京交通大學(xué);2015年
2 鄢舒源;移動(dòng)個(gè)性化應(yīng)用推薦系統(tǒng)的設(shè)計(jì)和實(shí)現(xiàn)[D];北京郵電大學(xué);2015年
3 余泓;基于移動(dòng)終端的移動(dòng)互聯(lián)網(wǎng)服務(wù)質(zhì)量及用戶(hù)行為分析研究[D];安徽大學(xué);2014年
4 李龍飛;基于Hadoop+Mahout的智能終端云應(yīng)用推薦引擎的研究與實(shí)現(xiàn)[D];電子科技大學(xué);2013年
5 李威;移動(dòng)互聯(lián)網(wǎng)用戶(hù)行為分析研究[D];北京郵電大學(xué);2013年
6 潘宇彬;基于個(gè)性化推薦的移動(dòng)應(yīng)用管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2013年
7 楊艷;下一代網(wǎng)絡(luò)業(yè)務(wù)用戶(hù)行為研究[D];西南交通大學(xué);2012年
8 王璐;移動(dòng)互聯(lián)網(wǎng)用戶(hù)行為分析[D];重慶郵電大學(xué);2012年
9 鄭桂鳳;移動(dòng)互聯(lián)網(wǎng)的用戶(hù)行為分析系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];北京郵電大學(xué);2010年
,本文編號(hào):2457383
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2457383.html