柑橘真菌感染部位的高光譜成像快速檢測
發(fā)布時間:2019-04-01 15:18
【摘要】:真菌感染是柑橘的一種常見病害,是柑橘腐爛的主要因素,自動化檢測出柑橘真菌感染可以有效提高柑橘的商品價值和市場競爭力。運用高光譜成像技術(shù)對真菌感染柑橘腐爛部位的缺陷特征進行了快速識別檢測;赗OI提取柑橘真菌感染光譜曲線,對光譜矩陣進行主成分分析,分析權(quán)重曲線后得到4個特征波段,分別為615,680,710和725nm,然后對這4波段組合分別做主成分分析,通過分析權(quán)重曲線提取到615和680nm兩個特征波段,基于這兩個特征波段做主成分分析,以第2主成分圖像為基礎(chǔ)識別柑橘真菌感染部位,識別率達到了100%。高光譜成像技術(shù)可用于快速檢測柑橘真菌感染引起的腐爛缺陷,為開發(fā)水果分級和缺陷檢測等相關(guān)儀器設(shè)備的研究提供了理論方法和依據(jù)。
[Abstract]:Fungal infection is a common disease of citrus, it is the main factor of citrus rot, and the automatic detection of citrus fungal infection can effectively improve the commodity value and market competitiveness of the citrus. In this paper, the characteristics of the defect of the citrus rot in the fungal infection were identified by the high-spectral imaging technique. extracting the spectrum curve of the citrus fungus infection based on the ROI, performing principal component analysis on the spectrum matrix, analyzing the weight curve to obtain four characteristic bands,615,680,710 and 725 nm, respectively, and then performing main component analysis on the four-band combination, By analyzing the weight curve to the two characteristic bands of 615 and 680 nm, the main component analysis is made based on the two characteristic bands, and the site of the citrus fungus infection is identified on the basis of the second main component image, and the recognition rate is 100%. The high-spectrum imaging technology can be used to quickly detect the decay defects caused by the infection of the citrus fungi, and provides the theoretical method and the basis for the research of the related instruments and equipment such as the development of the fruit classification and the defect detection.
【作者單位】: 浙江大學生物系統(tǒng)工程與食品科學學院;華東交通大學;
【基金】:國家重大儀器設(shè)備開發(fā)專項(2014YQ470377) 國家支撐技術(shù)項目(2015BAD19B03) 國家自然科學基金項目(61071220) 江西省科技支持項目(20123BDH80014)資助
【分類號】:S436.66;TP391.41
本文編號:2451663
[Abstract]:Fungal infection is a common disease of citrus, it is the main factor of citrus rot, and the automatic detection of citrus fungal infection can effectively improve the commodity value and market competitiveness of the citrus. In this paper, the characteristics of the defect of the citrus rot in the fungal infection were identified by the high-spectral imaging technique. extracting the spectrum curve of the citrus fungus infection based on the ROI, performing principal component analysis on the spectrum matrix, analyzing the weight curve to obtain four characteristic bands,615,680,710 and 725 nm, respectively, and then performing main component analysis on the four-band combination, By analyzing the weight curve to the two characteristic bands of 615 and 680 nm, the main component analysis is made based on the two characteristic bands, and the site of the citrus fungus infection is identified on the basis of the second main component image, and the recognition rate is 100%. The high-spectrum imaging technology can be used to quickly detect the decay defects caused by the infection of the citrus fungi, and provides the theoretical method and the basis for the research of the related instruments and equipment such as the development of the fruit classification and the defect detection.
【作者單位】: 浙江大學生物系統(tǒng)工程與食品科學學院;華東交通大學;
【基金】:國家重大儀器設(shè)備開發(fā)專項(2014YQ470377) 國家支撐技術(shù)項目(2015BAD19B03) 國家自然科學基金項目(61071220) 江西省科技支持項目(20123BDH80014)資助
【分類號】:S436.66;TP391.41
【相似文獻】
相關(guān)期刊論文 前4條
1 田有文;程怡;吳瓊;牟鑫;;農(nóng)產(chǎn)品病蟲害高光譜成像無損檢測的研究進展[J];激光與紅外;2013年12期
2 王斌;薛建新;張淑娟;;基于高光譜成像技術(shù)的腐爛、病害梨棗檢測[J];農(nóng)業(yè)機械學報;2013年S1期
3 馮雷;張德榮;陳雙雙;馮斌;謝傳奇;陳佑源;何勇;;基于高光譜成像技術(shù)的茄子葉片灰霉病早期檢測[J];浙江大學學報(農(nóng)業(yè)與生命科學版);2012年03期
4 鄭志雄;齊龍;馬旭;朱小源;汪文娟;;基于高光譜成像技術(shù)的水稻葉瘟病病害程度分級方法[J];農(nóng)業(yè)工程學報;2013年19期
相關(guān)碩士學位論文 前3條
1 邢曉祺;基于高光譜成像技術(shù)的玉米螟檢測方法研究[D];沈陽農(nóng)業(yè)大學;2016年
2 羅陽;基于NIR高光譜成像技術(shù)的長棗蟲害及可溶性固形物無損檢測研究[D];寧夏大學;2013年
3 陳納;基于高光譜成像技術(shù)油菜菌核病的快速診斷研究[D];浙江大學;2015年
,本文編號:2451663
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2451663.html
最近更新
教材專著