復(fù)雜場景下運動目標(biāo)檢測與跟蹤技術(shù)的研究
[Abstract]:With the rapid development of computer technology, intelligent video surveillance technology has been widely used in people's daily life, at the same time, it has brought great convenience to people's daily life. Detection and tracking of moving targets is a key problem in intelligent video surveillance technology. Moving target detection and tracking is a very hot topic in the field of computer vision. It is widely used in artificial intelligence, pattern recognition, image processing, medical imaging and other fields. It is also an important component of many visual application systems, such as intelligent video surveillance, human-computer interaction, intelligent driving and so on. It is also a challenge to change the target itself and the background environment in complex scenarios. Therefore, the research of moving target detection and tracking in complex scene has very important research value and practical significance. The main work of this paper is as follows: (1) aiming at the fixed updating rate of the mixed Gao Si model in the background modeling, the moving target can not be detected accurately in the complex scene, so an improved mixed Gao Si algorithm is proposed. Based on the mixed Gao Si model and the improved inter-frame difference method, the background is divided into different regions, and the suitable updating rate is selected for the different regions, so that the background model can better adapt to the external interference in the complex scene. The experimental results show that the improved mixed Gao Si algorithm proposed in this paper can adapt to the external environment interference, such as illumination variation, tree occlusion and so on. The accuracy of detection is improved. (2) aiming at the problem of particle degradation caused by particle filter abandoning low weight particles in the process of resampling, the particle filter is improved, and a particle filter algorithm based on firefly algorithm is proposed. In the process of importance sampling, the algorithm uses the firefly algorithm to iteratively optimize the particle, so that the particle is closer to the posteriori probability distribution, and the idea of the firefly algorithm is used in the process of resampling. The particle simulates the firefly to move to the high likelihood region, and updates the global optimum value, enhances the particle validity and the diversity. The experimental results show that under the influence of many factors, such as background change, irregular motion and tree occlusion, the proposed algorithm can use fewer particles and be efficient. (3) in the environment of VS2010, this paper designs and implements video input, image preprocessing, moving target detection, morphological processing by using MFC interface class library and computer vision class library OpenCV,. Video surveillance system for target tracking and target trajectory rendering. Target detection and target tracking module respectively use the detection and tracking methods proposed in this paper.
【學(xué)位授予單位】:江蘇大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前8條
1 張煥龍;胡士強;楊國勝;;基于外觀模型學(xué)習(xí)的視頻目標(biāo)跟蹤方法綜述[J];計算機研究與發(fā)展;2015年01期
2 朱夢哲;陳志華;趙鐘;尤越;;基于OpenCV的車牌定位和校正方法[J];計算機應(yīng)用;2013年S1期
3 王孝艷;張艷珠;董慧穎;李媛;李小娟;;運動目標(biāo)檢測的三幀差法算法研究[J];沈陽理工大學(xué)學(xué)報;2011年06期
4 李毅;孫正興;遠博;張巖;;一種改進的幀差和背景減相結(jié)合的運動檢測方法[J];中國圖象圖形學(xué)報;2009年06期
5 劉鑫;劉輝;強振平;耿續(xù)濤;;混合高斯模型和幀間差分相融合的自適應(yīng)背景模型[J];中國圖象圖形學(xué)報;2008年04期
6 陳磊;鄒北驥;;基于動態(tài)閾值對稱差分和背景差法的運動對象檢測算法[J];計算機應(yīng)用研究;2008年02期
7 吳健新;李翠華;吳曉昶;曾楠;吳琦穎;;數(shù)字視頻監(jiān)控系統(tǒng)開發(fā)平臺的設(shè)計與實現(xiàn)[J];廈門大學(xué)學(xué)報(自然科學(xué)版);2006年03期
8 宋紅,石峰;基于人臉檢測與跟蹤的智能監(jiān)控系統(tǒng)[J];北京理工大學(xué)學(xué)報;2004年11期
相關(guān)博士學(xué)位論文 前1條
1 孟軍英;基于粒子濾波框架目標(biāo)跟蹤優(yōu)化算法的研究[D];燕山大學(xué);2014年
相關(guān)碩士學(xué)位論文 前6條
1 陸偉;運動目標(biāo)檢測與跟蹤算法的研究及應(yīng)用[D];安徽理工大學(xué);2016年
2 尚進;監(jiān)控視頻中行人異常行為檢測系統(tǒng)的設(shè)計與實現(xiàn)[D];東南大學(xué);2015年
3 張國華;基于視頻流的復(fù)雜場景的公車人頭對象計數(shù)研究[D];南京航空航天大學(xué);2014年
4 熊德輝;基于粒子濾波的目標(biāo)跟蹤算法研究[D];華南理工大學(xué);2013年
5 許金金;復(fù)雜背景下的運動目標(biāo)檢測與跟蹤技術(shù)研究[D];華中科技大學(xué);2013年
6 戴丁樟;粒子濾波算法研究及其在目標(biāo)跟蹤中的應(yīng)用[D];哈爾濱工業(yè)大學(xué);2006年
,本文編號:2406771
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2406771.html