運(yùn)動(dòng)目標(biāo)跟蹤算法及應(yīng)用研究
[Abstract]:Firstly, this paper introduces the development and research status of moving target recognition and tracking methods at home and abroad, and gives a brief description of the relevant algorithms. Then, the particle filter tracking algorithm and the Camshift tracking algorithm are introduced and explained in detail, and the two tracking algorithms are compared with each other in order to explain their characteristics and advantages and disadvantages. This paper analyzes the tracking environment of the two tracking algorithms. When the color difference between the target and the background is large, the particle filter tracking algorithm and the Camshift algorithm can effectively track the target. However, when the color difference between the target and the background is small or the target is in the complex background area, the target tracking will produce deviation, and even can not track the target accurately. In order to improve the stability and accuracy of the above two tracking algorithms in complex background, based on the two basic algorithms, their respective improved algorithms are proposed to improve their tracking performance in complex background. A particle filter tracking method based on significant histogram model is proposed. By comparing the distribution of pixel hue in the target and background region, the significance weights of different hue levels are determined, and the significance histogram model of the target is established. The significant histogram model can suppress the interference of the region with similar hue to the target recognition in the background and highlight the role of the significant hue of the target in target recognition so as to improve the accuracy of target recognition. A Camshift tracking algorithm based on edge suppression is proposed. By using the position and size of the object in the previous frame through the weight function, the brightness weight of the edge of the object is reduced in the reverse projection, and the suppressed edge can effectively distinguish the object from the background, and weaken the tendency of centroid iterating towards the background. Improve the accuracy of target recognition. The simulation results show that the two algorithms proposed in this paper can improve the accuracy and stability of target tracking, and the amount of computation is not much increased, which can meet the real-time requirements of TV tracking system. Finally, the two improved tracking algorithms proposed in this paper are applied to the tracking of intelligent cars. The experimental results show that the proposed improved tracking algorithm can obtain better tracking results in practical applications.
【學(xué)位授予單位】:天津工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王紅茹;童偉;;基于自適應(yīng)高斯模型的實(shí)效運(yùn)動(dòng)目標(biāo)檢測(cè)算法[J];計(jì)算機(jī)工程與設(shè)計(jì);2016年10期
2 左軒塵;韓亮亮;莊杰;石琪琦;黃煒;;基于ROS的空間機(jī)器人人機(jī)交互系統(tǒng)設(shè)計(jì)[J];計(jì)算機(jī)工程與設(shè)計(jì);2015年12期
3 吳群;王田;王漢武;賴永炫;鐘必能;陳永紅;;現(xiàn)代智能視頻監(jiān)控研究綜述[J];計(jì)算機(jī)應(yīng)用研究;2016年06期
4 修春波;魏世安;;顯著性直方圖模型的Camshift跟蹤方法[J];光學(xué)精密工程;2015年06期
5 修春波;魏世安;萬蓉鳳;;二維聯(lián)合特征模型的自適應(yīng)均值漂移目標(biāo)跟蹤[J];光電子·激光;2015年02期
6 劉曉悅;孟妍;;運(yùn)動(dòng)目標(biāo)檢測(cè)與跟蹤算法的研究[J];河北聯(lián)合大學(xué)學(xué)報(bào)(自然科學(xué)版);2015年01期
7 高雅;李曉娟;關(guān)永;王瑞;張杰;魏洪興;;運(yùn)用定理證明器ACL2驗(yàn)證機(jī)器人操作系統(tǒng)ROS節(jié)點(diǎn)間通信[J];小型微型計(jì)算機(jī)系統(tǒng);2014年09期
8 黃凱奇;陳曉棠;康運(yùn)鋒;譚鐵牛;;智能視頻監(jiān)控技術(shù)綜述[J];計(jì)算機(jī)學(xué)報(bào);2015年06期
9 王法勝;魯明羽;趙清杰;袁澤劍;;粒子濾波算法[J];計(jì)算機(jī)學(xué)報(bào);2014年08期
10 郭靜;羅華;張濤;;機(jī)器視覺與應(yīng)用[J];電子科技;2014年07期
相關(guān)博士學(xué)位論文 前1條
1 袁國武;智能視頻監(jiān)控中的運(yùn)動(dòng)目標(biāo)檢測(cè)和跟蹤算法研究[D];云南大學(xué);2012年
相關(guān)碩士學(xué)位論文 前3條
1 張潤(rùn);基于雙目立體視覺的帶鋼偏移測(cè)量系統(tǒng)研究[D];武漢理工大學(xué);2014年
2 彭麗玲;基于圖像灰度的天氣變化機(jī)理及應(yīng)用初步研究[D];昆明理工大學(xué);2013年
3 張麗;軍事運(yùn)動(dòng)目標(biāo)的識(shí)別與跟蹤研究[D];東北大學(xué);2009年
,本文編號(hào):2406516
本文鏈接:http://sikaile.net/kejilunwen/ruanjiangongchenglunwen/2406516.html